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says f must be of odd degree (if q is odd). Indeed, excluding characteristic 
2 and 3, arithmetic monodromy groups of exceptional polynomials must 
be a~ne groups. 

We don't, however, know which affine groups appear as the geo- 
metric monodromy group of exceptional polynomials. Thus, there remain 
unsolved problems. Riemann's existence theorem in positive characteristic 
will surely play a role in their solution. We have, however, completely 
classified the exceptional polynomials of degree equal to the characteristic. 
This solves a problem from Dickson's thesis (1896). Further, we gener- 
alize Dickson's problem to include a description of all known exceptional 
polynomials. 

Finally: The methods allow us to consider covers X --~ P1 that 
generalize the notion of exceptional polynomials. These covers have this 
property: Over each Fq, point of p1 there is exactly one Fq, point of X 
for infinitely many t. Thus X has a rare diophantine property when X has 
genus greater than 0. It has exactly qt + 1 points in Fqt for infinitely many 
t. This gives exceptional covers a special place in the theory of counting 
rational points on curves over finite fields explicitly. Corollary 14.2 holds 
also for a primitive exceptional cover having (at least) one totally ramified 
place over a rational point of the base. Its arithmetic monodromy group 
is an afflne group. 

1. I n t r o d u c t i o n  

Riemann ' s  existence theorem has many  applications to algebraic and ar i thmetic  

geometry.  Traditionally, it is a characteristic 0 result. This gives a combinatorial  

display of covers of the Riemann sphere with specified branching properties.  

It can reduce problems that  don ' t  look group theoretical to pure group theory. 

Tradit ional  forms of the existence theorem star t  over an algebraically closed field. 

Yet, it is possible to use it in number  theory problems. For example [Pr3] used 

it to  solve the Schur conjecture. Consider the ring of integers OK of a number  

field K.  Schur conjectured the following in 1923 [Schl]. A polynomial  f E OK[Z] 
tha t  gives one-one (permutat ion)  map on infinitely many  residue class fields of  

OK must  be a composi t ion of twists of cyclic and Uhebychev polynomials.  

We consider an analog over a finite field Fg. Here, q = p" for some odd  prime 

p, and u is a positive integer. The  problem is f rom arithmetic;  solutions to the 

problem depend on Fq. We use n as the degree of f .  Denote a fixed algebraic 

closure of  a field K by/~ ' .  This paper  has three parts. 
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1 .a  DESCRIPTION OF PART I, 2-4. We interpret an arithmetic problem about 

polynomials with group theory. This is to describe those f E Fq [x] that give a 

one-one map on infinitely many finite extensions of Fq. The literature calls these 

polynomials exceptional. Note: The p-th power map is an obvious permutation 

of the elements of F¢. Therefore, we assume throughout 

~--~(f(x)) ¢ 0; f is not g(z) v for some g E Fq. 

CONJECTURE (Carlitz 1966, [LMu; P9]): If p is odd, exceptional polynomials 
must be of odd degree. 

It is increasingly difficult to prove this as we increase the power of p dividing 

n = deg(f). We illustrate with the following division: 

(i) (deg(f),p) = 1; 

(ii) exactly one power of p divides deg(f); and 

(iii) an arbitrary power of p divides deg(f). 

Following [Fr3], f produces a curve covering of the affine line with the variable 

z to the affine line with variable z. Denote this f :  A 1_ ~ Alz by x H f(x)  = z. 

Group theory enters by considering the geometric and arithmetic monodromy 

groups of this cover (§3). The Exceptionality Lemma of §3 completely charac- 

terizes exceptional polynomials by their geometric-arithmetic monodromy group 

pair. Therefore, the problem starts with a classification of the pairs of groups 

(G, G), G normal in G, that satisfy the Exceptionality Lemma. Both groups 

naturally come with permutation representations of degree deg(f). With such a 

classification we can hope to produce polynomials f over finite fields that realize 

the successful pairs (G, 0).  There are, however, two problems. 

We discuss the second problem in §l.c. First: We need more information from 

the theory of characteristic p covers to limit the pairs of groups (G, G) under 

consideration. The Goo-Lemma of §4 describes the inertia group Goo over oo 

of the cover given by the polynomial. It is a transitive group. When (i) holds, 

an n-cycle generates Goo; and when (ii) holds, Goo is an elementary p group 

by cyclic prime-to-p group. When (iii) holds Goo is an arbitrary p group by 

cyclic prime-to-p group. This alone accounts for the relative difficulty of proving 

Carlitz's conjecture in the three cases. In addition, the discussion around the 

Indecomposability Statement of §4 considers the possibility of restricting to cases 

when G is primitive if either (i) or (ii) hold. (See the end of §l.d.) 
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1.b DESCRIPTION OF PART II, §5--§11. We describe the prime degree poly- 

nomials that solve the original arithmetic problem (§5-§8). [Fr3] shows that an 

exceptional f satisfying (i) is a composition of (odd) prime degree reductions 

of twists of cyclic and Chebychev polynomials from characteristic 0. Theorem 

8.1 of §8 explicitly displays all exceptional polynomials of degree equal to the 

characteristic p of the finite field. This extension of [Fr3] solves a problem from 

the Thesis of L.E. Dickson [D]. §9-§11 analyze conditions for a group to be the 

geometric monodromy group of an exceptional polynomial cover. 

Theorem 11.1 and Cor. 11.2, together, describe indecomposable exceptional 

polynomials whose arithmetic monodromy groups are the only a/fine groups 

known to correspond to exceptional polynomials. These arithmetic monodromy 

groups contain a group of the form V x s C with C cyclic and acting irreducibly 

on V = F~ (see §l.c). This generalizes Theorem 8.1 and Dickson's conjecture by 

showing these are the semi-linear polynomials of Cohen ([C2]; [LMu; discussion 

following P9]). These groups are of form V x s M with M either cyclic or solv- 

able and generated by two elements of GL(V). Still, these are solvable groups. 

Therefore, Remark 11.3 illustrates a nonsolvable contender for an affine group 

that may correspond to an exceptional polynomial. 

1.c DESCRIPTION OF PART III, §12-§14. In contrast to the arithmetic Parts 

I and II, Part III is primarily group theoretic. There are many tools for investi- 

gating primitive permutation groups. Especially, Part III of the paper uses the 

classit~ca~ion of finite simple groups. 

Recall: A polynomial is i ndecomposab le  (over Fq) if it isn't a composition 

of polynomials over Fq of smaller degree. With no loss, take exceptional polyno- 

mials to be indecomposable and monic. Exclude twists of cyclic and Chebychev 

polynomials. Here are the consequences of Theorem 14.1 when p ¢ 2 or 3. 

Indecomposable exceptional polynomials have arithmetic monodromy group 

an a///ne group. These are of form V x 8 0(1). Here V is a vector space of 

dimension a over F v. Also, 0(1) is a subgroup of GL(V) acting irreducibly on 

V: there is no group properly between 0(1) and V x s 0(1). That is, V x s 0(1) 

is primitive in its action on V. In this case, Corollary 14.2 says the degree of f 

is pa. Since pa is odd, this solves Carlitz's conjecture, except for the case p = 3. 

For completeness we record the story for exceptional polynomials when p ~ 2 or 

3. For cyclic or Chebychev polynomials, we mean (possibly) twists of these. 
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CHARACTERISTIC p > 3 THEOREM: Suppose p # 2 or 3. Assume f is an ex- 

ceptional polynomial over Fq. Then, f is a composition of cyclic polynomials 

with (deg(f ) ,q  - 1) = 1, Chebychev polynomials with (deg(f),  q2 _ 1) = 1, and 

polynomials of degree a power of p. 

In addition to affine groups there is another possibility when p = 3. Linear 

groups of dimension 2 over F3, occur in Case 4a of the proof of Theorem 14.1. We 

haven't  eliminated these as geometric monodromy groups of exceptional polyno- 

mials when a is odd and n = 3a(3 a - 1)/2. Fortunately, 3 a - 1 = 2 mod 4, and the 

degree of the representation here is odd. Thus, these don't  give counterexamples 

to Carlitz's conjecture. 

We don't,  however, yet have a form of Riemann's existence theorem strong 

enough to produce the exact list of a/fine groups that are the geometric mon- 

odromy groups of exceptional polynomials. A later paper will consider this by 

applying the Polynomial Riemann-Hurwitz Lemma of §9 and the Riemann Ex- 

istence theorem ideas from §11. For example, we still don't  know if there are 

any nonsolvable groups that are monodromy groups of exceptional polynomials. 

See the discussion of Theorem 11.1 in §l.b. Finally, consider the case p = 2. Of 

course, there are the analogs of the case of odd p: G contained in the affine group 

of degree 2% Other than these, exceptional polynomials (essentially) have geo- 

metric monodromy group G = SL(2,2"), with a > 3 odd and n = 2"-1(2" - 1). 

As when p is odd, we don't  yet know if there are indecomposable exceptional 

polynomials that give such geometric monodromy groups. 

Finally, these results apply to the arithmetic monodromy groups of genera/ 

exceptional covers X ---* Y if at least one rational point of Y is totally ramified 

in X.  We develop the theory of general exceptional covers in §10. The case that 

needs little explanation here is when X is of genus 0; the cover derives from a 

rational function map. Still, the General Exceptionality Lemma shows all general 

exceptional covers have a special place in investigations for explicitly counting 

rational points on curves over finite fields (see §l.d). 

1.d PREVIOUS RESULTS. As a preliminary illustration of our method we show 

how to apply it to get the results of Cohen [C] and Wan [W]. They proved there 

are no exceptional polynomials of degree 2p, p the characteristic of Fq as above. 

This demonstrated Carlitz's conjecture for those degrees. See Appendix B for 

discussion of their methods. 
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Suppose f is exceptional and deg(f) = 2p. If f decomposes over Fq, then f --- 

fl  of~ with £ ,  f2 E Fq [x]. Either deg(fl) or deg(f2) is 2, and both polynomials are 

exceptional. It is trivial to show a polynomial of degree 2 cannot be exceptional. 

Conclude: f is indecomposable over Fq. If f is indecomposable over Fq, then 

its geometric monodromy group G is primitive (§3). We are ready to use group 

theory. 

Wielandt [We] states a primitive group of degree 2p is rank two (doubly tran- 

sitive) or rank three. That is, the stabilizer of the integer 1 has one or two orbits 

acting on {2, . . . ,n}.  Interpret this to say ~(x,y) - f(z)-f(y) has one or two X--y 

irreducible factors over Fq. On the other hand, being exceptional is equivalent 

to the following statement (c.f. Exceptionality Lemma of §3). Any irreducible 

factor of ~ over Fq factors into smaller degree polynomials--each of the same 

degree--over Fq. Thus, ~ must have two factors of the same degree. Since ~ is 

of odd degree, this is impossible; there are no exceptional polynomials of degree 

2p. (Aside: The classification of finite simple groups shows the only rank three 

groups of degree 2p, p a prime, are the degree 10 representations of A5 and $5.) 

Finally, we must deal with the possibility f is indecomposable over Fq, but 

it is decomposable over Fq. We show this is impossible. Take (G, G) to be the 

geometric-arithmetic monodromy groups of f as in the Exceptionality Lemma. 

Then G is primitive of degree 2p and G is a nontrivial normal subgroup. Denote 

the stabilizer of 1 in any subgroup H of G by H(1). The next lemma concludes 

the argument: Carlitz's conjecture is true if n = 2p. 

LEMMA 1.1: Under the hypotheses above, G is primitive. 

Proofi Let A be a minimal normal subgroup of G. Since 0 is primitive, A is 

transitive. Suppose A(1) is not maximal in A. Consider M properly between 

A(1) and A. Thus, either [A: M] = 2, or [M:  A(1)] = 2. In the first case the 

intersection of the G conjugates of M is normal in G. Therefore, this intersection 

must be trivial. Since A is a product of isomorphic simple groups, it is an 

elementary abelian 2-group. Yet, A is transitive. So 2p divides [A[: contradiction. 

In the second case, A(1) is normal in M. It is also normal in G(1). If A(1) -- 

{1}, conclude a contradiction as above to A being a 2-group. Thus, A(1) # {1}. 

Since 0(1) is maximal, 0(1) is the full normalizer of A(1). In particular, M _< 

0(1). Conclude M = A(1), a contradiction. | 

Indeed, Theorem 10.1 generalizes the Cohen-Wan result in a different direction. 
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We show there is no general exceptional cover (§10) of degree 2p. A general ex- 

ceptional cover X ~ Z (of nonsingular, absolutely irreducible, projective curves 

over Fq) has a property analogous to that of exceptional polynomials. For in- 

finitely many t, each point of Z(Fq, ) has exactly one point of X(Fq, ) above 

it. The General Exceptionality Lemma of §10 shows that such covers are also 

characterized by their geometric/arithmetic monodromy group pair. General ex- 

ceptional covers could come from rational functions (genus of X is 0), or from 

covers of higher genus curves. 

Finally, we comment on the Indecomposability Statement of §4.b. This states 

that if f is indecomposable over ~'q, then it is indecomposable over ~'q. Whenever 

it holds it is valuable for the study of all, not just exceptional, polynomials. It 

translates to the geometric monodromy group G is primitive if the arithmetic 

monodromy is primitive. It does hold when (i) holds: (n,p) = 1. When, how- 

ever, (ii) holds Peter Mueller has found a counterexample to it. His example 

is sporadic; we know of no other when (ii) holds. We explain this in Example 

11.5. Corollary 11.2 gives many examples of polynomials f indecomposable over 

•q that are decomposable over ~q. These nonsporadic examples have degree a 

power of p (> p). Such counterexamples to the IndecomposabiIity Statement 

answer a problem of Cohen [C] negatively. 

1.e FURTHER COMMENTS. We use the theory of covers. Covers of the sphere 
pl that arise here have ramification that is neither tame nor purely wild. This 

happens over cx~ throughout this paper. In treating this, we survey what a 

complete theory of covers in positive characteristic must do to imitate the results, 

say, of [Frl, 3]. Addendum C describes recent results of Abhyankar [A], Harbater 

[H], Raynaud [R] and Serre [S1]. Although they fall short of what we need to 

complete the problems of §l.c, we describe how they contribute to versions of 

Riemann's existence theorem (see §2, §11). 

[Mu] and [LMu] contain discussions of the Carlitz, Dickson and Schur conjec- 

tures. Up to 1983 [LN] contained the definitive list on permutation polynomial 

references. Daqing Wan simplified the discussion that derives Theorem 8.1 of §8 

from equation (,4) of §7. 

Serre's book [Se3; p. 79] has this quote: 

"Although the proof of the classification has been announced, described and 

advertised since 1980, it is not clear on whether it is complete or not: the 

part on quasi-thin groups has never been published." 
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Manuscripts by Mason (from circa 1979) and by Aschbacher (1992) taken together 

contain a proof of the classification of quasi-thin groups. 

Hayes made the first contributions to Carlitz's conjecture. He paints this pic- 

ture of its formulation [H]. In the midst of considerable activity in the area, a 

paper of Davenport and Lewis [DaL] caused Carlitz to consider what general 

implications might come from Dickson's thesis [D]. Carlitz stated, his conjecture 

in a Mathematical Association of America address in 1966. 

PART I: S C H U R  C O V E R S  G I V E N  B Y  P O L Y N O M I A L S  

2. Tools to interpret the problem 

First, we apply the nonregular analog of the Cebotarev density theorem ([Fr6] 

or [FrJ; §5 Prop. 5.16]). This gives the Exceptionality Lemma of §3, a Galois 

theoretic characterization of exceptionality. We turn to the theory of covers to 

capture group theoretic information that tells us these groups arise from polyno- 

mials. For positive characteristic this is an analog of one of the main examples 

from the first author's Santa Cruz talk in 1979 [Frl]. There is, however, a crucial 

difference. We explain this following a brief introduction on Riemann's existence 

theorem in characteristic 0. 

Throughout,  z will be an indeterminate, transcendental over any particular 

base field. Usually, this base field will be K.  Thus, K(z)  is the field of rational 

functions in z with coefficients in K.  We speak of the branch points of an 

extension L/K(z ) .  This indicates the values of z that  have ramified places of L 

above them. Each function field of one variable corresponds to an algebraic curve. 

Also, each extension of function fields L / K ( z )  corresponds to a cover qo: X --~ ps 

of algebraic curves. The cover is the same degree as the field extension. 

For the subset of this paper that deals only with the Carlitz conjecture, our 

covers arise from a polynomial f E K[x]. For these covers, the curve X will be 

pl_. We take this as the set of values of x E / ~  with oo adjoined. Then, the map 

x ~-~ f (x )  = z represents the map denoted ~. Important information occurs in 

the ramification over z = co. 

When K is the complex numbers C, view P~ = p1 as the Riemann sphere 

C U {c~). This is a Riemarm surface or algebraic curve defined over C. Let 

z l , . . .  ,zr  E p1 be the branch points of the cover qo. Set z = ( z l , . . .  ,Zr}. Then 

restricts to a topological (unramified) cover qa ° of the punctured sphere p1 \ z. 
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Choose a base point z0 on this punctured sphere. 

The theory of covering spaces allows us to label covers with combinatorial data, 

called branch cycles below. First: The equivalence class of ¢0 corresponds to a 

conjugacy class [U¢] of subgroups U~ of the fundamental group F = zrl (p1 \ z, z0). 

In fact, there is a one-one correspondence between equivalence classes of covers 

Ct: X ~ ___, p1 with branch points among z l , . . . , z r ,  and conjugacy classes of 

subgroups of F of finite index. Suppose ¢ is a degree n map: deg(f)  = n in our 

special case. Identify the geometric monodromy group of a cover (§3) with the 

image G in S,, of F acting on cosets of V. See, for example, [Gr], [Prl] or [Se3; 

Chap. 6] for this and more detail on what follows. 

It is perfectly reasonable to consider covers of curves in positive characteris- 

tic. Yet, one cannot use topology. Topology gives a completely combinatorial 

description of the curve covers of p1 in characteristic 0. It is well known that 

~rl(P 1 \ z, z0) is freely generated by elements E l , . . . ,  ~r  satisfying one relation- 

ship E1 "'" E~ = 1. Thus, the images a l , . . . , a ~  E Sn of the E s determine the 

image group G. These generate G, and their product a l . . . a ~  is 1. We call 

such an r-tuple, a = ( a l , . . . ,  a t) ,  branch cycles for the cover. In addition, each 

ai corresponds to exactly one branch point zi. Indeed, take ]_, to be the Galois 

closure of the field extension L/C(x) .  Then al is the inertia group generator for 

one of the places of g lying over z~. 

We can be even more down-to-earth. Suppose e is the order of ramification 

of some place of L above zi. Then, embed L (and therefore L) in the Laurent 

series expansions C((z~)) so the embedding is the identity on C(z). For some 

such embedding, restriction of the automorphism that maps z~ to e-~z-~ gives 

ai. (Pardon the juxtaposition of these two traditional uses of e.) Still, there 

are many embeddings of L. You can't pick an embedding at random for each 

i = 1 , . . . ,  r and expect to get the full set of properties for a. 

Characteristic p covers of p1 don't  have an obvious correspondence with char- 

acteristic 0 covers. For L / K ( x )  it's all in the ramification, if K is algebraically 

closed. (In the classification of exceptional polynomial problem, serious phe- 

nomena happen because K isn't algebraically closed.) Again, we've thrown out 

the inseparable extensions. They aren't  of diophantine interest. Grothendieck's 

theorem [Gr] says a cover X --* pi with only tame ramification has associated 

branch cycles. This is because you can lift the cover to characteristic 0. On the 

other hand, even if a cover in characteristic 0 has branch cycles of order relatively 
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prime to p and you are over (~, you cannot expect to reduce the cover modulo p. 

Also, covers with wild ramification have little relationship to characteristic zero 

covers with branch cycle descriptions. 

3. Schur covering p rob lem and basic nota t ion  

Schur in 1923 made a conjecture about a polynomial f E Z[z] that gives a one- 

one map on infinitely many residue class fields. It is a composition of twists of 

well-known polynomials. That is, f is a composition of twists of linear, cyclic 

(like z n) and Chebychev polynomials. The n-th Chebychev polynomial has the 

property that Tn(cos(0)) = cos(n0). [Fr3] showed this. (The results also work 

with the ring of integers of a number field replacing Z.) 

The phrase twists means there are changes of variable over Q that turns them 

into the classical polynomials. For example, 2z 3 = (2}z) 3. Chebychev polyno- 

mials support more complicated twists. Polynomials that give one-one maps are 

permutation polynomiMs. Carlitz made his conjecture in the following form. 

CONJECTURE Cn: Suppose n is an even positive integer. There is a constant c ,  

so that there exists no permutation polynomial of degree n over Fg if  q is odd 

and q > cn. 

The main result of this paper proves this conjecture. Consider a polynomial 

f 6 Fq[x]. We say f is except ional  if f gives a one-one mapping on Fq, for 

infinitely many integers t. Interpret this with Galois theory. Regard f as a map 

from affine x-space to affine z-space: f:  A~ --0 A~ by z ~-* f (z)  = z. Consider 

the fiber product of this cover with itself, 

1 def Vs = Y = A~ ×A, A= = {(z1,z2) [ f(z~) = f(z2)}. 

Remove the diagonal component A from Y. Call the resulting curve yi .  Sup- 

pose yi  has at least one absolutely irreducible component I:1 defined over Fq. For 

q large compared to deg(f), the Lang-Weil estimate says I:1 has Fq points [FrJ; 

Theorem 4.9]. These would be (.Tx,Z2) • ~q with / (Zl)  ~- I(.T2), but zl # z2. 

So, f wouldn't be one-one on Fq. 

Thus, if f is exceptional, no irreducible component of Y~ can be absolutely 

irreducible over Fq; each component decomposes further over the algebraic closure 

Fq. Use g for Fq. Consider the Galois closure g ( z )  of the extension g ( x ) / g ( z ) .  
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It has a natural permutation representation of degree n = deg(f). Denote the 

Galois group G ( g ( x ~ ) / g ( z ) )  by G: the ar i thmet ic  m o n o d r o m y  group  of  f .  

The field kd----~tK~) N/~ is the key in arithmetic interpretation of exceptional 

polynomials. The group 0 has G ( g ( x ) / K ( z ) )  = G as a normal subgroup: G is 

the geometric monodromy group of f .  Both groups act on the n roots x l , . . . ,  xn 

of the equation f ( x )  = z. This turns them into transitive subgroups of Sn. 

Denote the stabilizers in each group of the integer 1 in this representation by 

0(1) and G(1), respectively. These both act on the integers {2, . . . ,  n}. Cohen 

[C] has a version of the next lemma. 

EXCEPTIONALITY LEMMA ([Frl; §3 or Fr4]): A polynomial f E Fq[X] is excep- 

tional i f  and only if G(1) fixes no orbit of G(1) on {2, . . . ,  n}. Denote [G: G] by s. 

l f  f is exceptional, then f is also exceptional over Fq~, for each v with (v, s) ~- 1. 

Suppose f is a composition of f l ,  f2 E Fq [x]. Then, f is exceptional i f  and only 

i f  both f l  and f2 are exceptional. 

Proo£" Consider the first sentence. Each orbit of 0(1) on {2, . . . ,  n} corresponds 

to an irreducible component of Y'--as above---over •q. There is a similar state- 

ment for G(1) and Fq. To make this correspondence clear, consider the group 

6(1). The permutation representation comes from G acting on the coordinates 

of points of P~ over the generic point z of P1 z. 

Generic points of components of y i  (also, over z) are pairs of distinct generic 

points of P~. Consider two generic points yl and y2 of components of Y~ over 

K = Fq. These belong to the same component if and only if for some r E G, 

7"(yl) = y2- The group is transitive. Therefore, a pair of generic points with first 

coordinate, say, xl represents each conjugate class of orbits. Orbits of 0(1) on the 

second of the pair of generic points determine orbit classes. Similar identifications 

apply to the components of Y'  over k and the group G(1). 

Thus, the group theoretic statement of the lemma says no irreducible compo- 

nent of y i  remains irreducible over Fq. We need go no further than Fq to assure 

we have all the absolutely irreducible components of Y~. We are done if f is 

exceptional when y0 has no absolutely irreducible components. Look back at the 

Lang-Weil argument; it nearly shows this already. It says, for large q, Y~ has no 

absolutely irreducible component if and only if there is a bound (as a function of 

deg(f)) on the Fg points. For this situation, [Fr4] allows us to improve a crucial 

part. If Y' has no absolutely irreducible component, then Y~ has no points off 
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the diagonal. This concludes the first statement of the theorem. 

Suppose (v, s) = 1 with v and s as in the statement of the theorem. Above we 

showed exceptionality of f is a Galois theoretic s tatement about  the groups 

and G. Extend Fq to Fq~. From our assumptions, F ~  N K(z) = Fgo Q I~7 = Fq. 
Thus, the groups G(K(x)/g(z)) and G(Fq, g(x)/Fq, g(z)) are isomorphic. The 

Galois s tatement  doesn't  change when we extend by Fq,. Now consider the last 

s ta tement  of the theorem. 

Suppose f = f l  o f2. Exceptionality for f means f is one-one over Fq, for 

infinitely many t. Therefore, f l  and f2 are one-one over the same fields, so they 

are exceptional. In the other direction, we use the stronger form above. If f l  

is exceptional, there exists sl such that  f l  is one-one over Fq, with (t, Sl) = 1. 

Similarly, if f2 is exceptional, there is a corresponding s2. Thus, both polynomials 

are one-one over Fq, if (t, sl • s2) = 1. Clearly, f is one-one over these fields. So, 

f is exceptional. | 

COHEN'S VERSION En OF CARLITZ'S CONJECTURE [C]: Thereis no exceptional 
polynomial of even degree in odd characteristic. 

Equivalence of this to Carlitz's conjecture follows immediately from the above 

discussion. The original proof of Schur's conjecture shows why pin is the serious 

case (see §1). This gives a list of exceptional polynomials when n is odd and p 

doesn' t  divide n. See Addendum B for details and more on the contributions of 

Cohen, Hayes and Wan. 

4. D ecom p osab le  polynomials  

Suppose we can write a rational function f E K(x)  as fx(f2(x))  with deg(fi)  > 1, 

i = 1, 2. We say f(x) d e c o m p o s e s  over K.  Then, fi is a composition factor 

of f .  If  f has no composition factors, it is i n d e c o m p o s a b l e .  Recall: The 

degree of a rational function is the maximum of the degree of its numerator  and 

denominator- -when these are relatively prime. 

4.a INTRODUCTION TO RAMIFICATION OVER o0. Liiroth's Theorem says any 

fields between K(z) and K(z) are of the form g(w). When z = f(x) is a 

polynomial in x, oo is the only place of x lying over oo = z. We say oo is totally 

ramified in the extension g(x)/g(z) .  With no loss, assume such a w has the 

place oo lying over z = oo. Thus, w is a polynomial in z, and z is a polynomial in 

w. Tha t  is, fields between K(x) and K(z) correspond to polynomial composition 
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factors of f .  Total ramification over oo is at the center of much of what we can 

do. Therefore, we give a simple explanation of how we use this property. 

Ramification theory (c.f. proof of Goo-Lemma below) attaches a number to 

each x0 E /£ .  This is the ramification index, e = e(xo/zo), of x0 over z0 = f(xo). 
Ramification is tame if p doesn't divide e. Total ramification of x0 over z0 is 

equivalent to e(x0/z0) = [K(x) : K(z)]. 

Suppose K(x)/K(z) totally ramifies over z = oo. Consider L] and L2, subfields 

of K(x)  with LI/K(z) and L2/K(z) both of degree m, (re,p) = 1. Then, L,L2 
is an extension L of K(z) with the following properties. We still have z = oo 

totally ramified in L (there's only one place over (x)). On the other hand, here 

ramification is tame (p ~ m). Therefore, the place of L that has value c~ in both 

L] and L2 has ramification index the least common multiple of the ramification 

indices for the extensions Li/K(z), i = 1, 2. The least common multiple of m 

and m is just m. Thus, 

[L: g (z ) ]  = ILl :  g(z) ]  = [L2: g(z) ]  = m. 

In particular, all three fields are equal. 

When ramification isn't tame, there are complications. To get the best ad- 

vantage of this conclusion without using ad hoc ideas, we have taken a group 

theoretic approach. To investigate the between fields in any separable field ex- 

tension L/F, look at the Galois group of the Galois closure L/F. As in §3, take 

the representation of G = G(L/F) to be action on the cosets of G(L/L). Denote 

the stabilizer of the integer 1 in G by G(1). Fields between L and F are in 

one-one correspondance with groups between G(1) and G. 

Next Step: Take L = K(z) and replace F b y / ( ( z ) .  Then G is the geometric 

monodromy group of §3. Finally, consider the same situation wi th /~ ( (1 /x ) )  re- 

placing L, and F w i t h / ( ( ( I / z ) ) ,  to get the group Goo = G(g((1/x))/[£((1/z))). 
The groups between G~(1)  and Goo are in one-one correspondence with the 

fields between /~((1/z)) and /£ ( (1 /x ) ) .  The Embedding Lemma below makes 

this conclusion from total ramification: groups between G(1) and G go one-one 

into groups between G~(1)  and Go~. (This isn't onto.) Often we can compute 

the group G ~  easily even if we don't  know G. We thereby draw conclusions 

about fields between g(x) and g(z). 

4.b THE INDECOMPOSABILITY STATEMENT. We apply the ideas above to the 

relation between composition factors over K and over/~.  Cohen [C] claims when 
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pin the following is still unknown. 

INDECOMPOSABILITY STATEMENT: /ic f (x)  E ~'q[x] is indecomposable, then it is 

also indecomposable over Fg. 

Actually, Corollary 11.2 gives counterexamples to it. Other than these solv- 

able group examples, the only other we know is the sporadic example of Mueller 

in Example 11.5. Still, it holds often and is valuable when it does. Thus, §4.d 

considers it in detail in the case p[[n. We expect Example 11.5 to be one of 

only finitely many counterexamples to the Indecomposability Statement when 

just one power of p divides n. The Cocycle Lemma shows the Indecomposability 

Statement when (n, p) = 1. In the solution of the Schur conjecture, [Fr3] made 

immediate use of this--i t  includes the case K has characteristic 0. The proof 

there was combinatorial, playing with the coefficients of a composition of two 

polynomials. The additional sophistication of the next proof allows us to gener- 

alize it. Consider h E/~(z) .  An element a E G([( /K)  acts on the coefficients of 

the numerator and denominator of h. This gives a conjugate of h. Denote this 

conjugate over K by h a. 

COCYCLE LEMMA: 

(a) Suppose h E K[x] and R(h(z)) = R (h ' )  for each a E G(K/K) .  Then, 

there exists hi e K[x] with K(h(z))  = R(hl(z)) .  Here g is any perfect 

fidd. 

(b) Suppose K is a perfect field with trivial Brauer group (as when K = Fq). 

The conclusion of a) holds with h E K(z)  and hi E K(z)  replacing h E K[x] 

and hi E K[x]. 
(c) Consider f E K[z] o£ degree n. Let k divide n. Assume there is exactly 

one field L with K(f (z ) )  C L C K(x) with [L : K(/(x))]  = k. Then, 

f = fl(f2(x)) with f l , f2  E K[x] and deg(/1) = k. In particular, the 

Indecomposability statement holds i£ (n,p) = 1. 

Proof o£ (a): From the hypotheses of (a), some linear fractional transformation 

takes h to h% The values of h and h ~ at z = oo are both oo. Thus, this 

transformation takes co to oo. The linear fractional transformation is an affine 

transformation. Write this in the form: h ~ = a~h + b~, with a~, b~ E K.  

Thus, {a~}~ea(/~/g) forms a 1 cocycle with coefficients in/~*: (a,)~a~ = a,,~. 

By Hilbert's Theorem 90, this 1 cocycle is trivial. That is, a,, = a / a  '~ for some 

a E/~.  Replace h by ah. With this change take a~ as 1 for all a E G(K/K) .  
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Similarly, the bas form an additive 1-cocycle, and this must be trivial. The 

triviality of this 1-cocycle means there is a polynomial defined over K generating 

the same between field (over/~)  as does h. This is what we set out to prove. 

Proof of (b): As in a), there is a linear fractional transformation that takes h 

to h a. Here, however, we can't  assume the transformation takes o¢ to oo. Still, 

we get a 1-cocycle with values in PGL2(/~). The next statements on cohomology 

are in [CaF; Chapter by Atiyah and Wall]. Consider the usual exact sequence 

1 --+/(* --* GL2(R) --* PGL2(R)  --* 1 

of groups on which G(fif/K) acts. 

The exact sequence of cohomology gives the exact sequence 

H I(G(R/K), GL2(/~)) --* H 1 (G(K/K), PGL2(/~)) --* H=(G(R/K), K*). 

Again, from Hilbert 's Theorem 90, the first term is 0. The last term is the Brauer 

group. This is trivial over a finite field. Thus, conclude as in a). 

Proof of (c): Take L as in the statement of the lemma. From the previous 

discussion, L = K(h(x)) with h(z) e /~[x]. We have only to show there is 

another polynomial f2 E g[x] with L = [((f2(x)). 
The field extensions [f(h)/[f(z) and [~(ha)/[f(z) are both of degree n~ deg(h), 

and totally ramified over z = oo. There is only one extension of degree k. Thus, 

these two fields are the same. Now apply (a). 

Now assume (n,p) = 1. For f E K[x] consider the fields between g(x)  and 
g(z). Take z' = 1/z and x' = 1/x (see the proof of the Goc-Lemma). For any 

given divisor of n, there is at most one such field of that degree between/~((x ' ) )  

and/~( (z ' ) ) .  This is because [f((x'))/[f((z')) is Galois and G(ff((x'))/[f((z'))) 
is cyclic and transitive of degree n. (This fails with wild ramification; see G ~ -  

Lemma below.) Therefore, for any divisor of n, there is at most one field (often 

none) of that degree between/~(x)  and/~(z) .  Conclude from above: if f decom- 

poses over /~ ,  then it decomposes over K.  | 

4.c G~-LEMMA. This subsection contains the main observation on ramification 

of the cover f :  F~ --* F~ over z = oo. 
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GALOIS CLOSURE LEMMA: Suppose L / K  is a finite separable f idd extension. 

Denote the Galois dosure of this extension by L / K .  Then, G ( L / K )  contmns no 

nontrivial normal subgroup C' such that C' C_ G( L / L ). 

Proof." Consider the fixed field L' of the group C', as in the statement of the 

lemma. Then, L' is a Galois extension of K contained in ]_, that contains L. 

From the definition of ]_,, L = L' and C' is trivial. It 

Goo-LEMMA: Assume f E g[z] is separable, and n = deg(f)  = mp s, (m,p)  = 1. 

Then, the inertia group Goo for a prime of K (x )  lying over oo E P~ has the 

following properties. It is transitive. Its p-Sylow subgroup Hoo is normal. The 

quotient Goo/Hoo is cyclic of order a multiple of re. l.f s = O, Hoo is trivial and 

IG I = n. I f  s = x ,  then, H ~  ~- (Z/p)"  with u < m and [Goo/Hool is m .  k with 

k a divisor o f p  - 1. 

Proof.' Take z t = 1/z and z'  = 1/z. Replace K by/~ ,  and consider the splitting 

field M of f ( x )  - z over/<((z ')) .  The Galois group of M / f f ( ( z ' ) )  is Goo. Rewrite 

f ( x )  as g(1/x)x  ~ = g ( 1 / z ) / ( 1 / x ' ) .  Write the relationship between z' and z '  as 

(x ' )n /g(x  ') = z'. The degree of f is n. Thus, the constant coefficient of g(x') 

is nonzero. Apply the geometric series to expand 1/g(x I) as a power series in z I 

with non ero constant coemeient. Thus, K((z'))(x) = 

Extend the natural valuation of R((z'))  with ord(z') = 1 to R((x')) .  From 

the above, ord(X/g(x')) = 0. Conclude: n .  ord(x') = ord(z') = 1. Therefore, 

R((z'))/R((z')) is ramified of index n. In particular, it is of degree n. This 

proves Go~ is transitive. 

For the rest, use ramification theory [CaF; §1.6-§1.9]. Theorem 1 of p. 29 

and Corollary 1 of p. 32 of [CaF] contain the essentials. One goes to the sep- 

arable closure S of /~((z')) in two steps. There is a Galois extension T = 

[.)(k,p)=lI~(((z')l/k)): the maximal tamely ramiz6ed extension of K((z ' ) ) .  Then, 

G ( S / T )  is a pro-p-group. Tame ramification produces cyclic inertia groups of 

order prime to p. Wild ramification gives us the higher ramification subgroups, 

normal in the whole inertia group. This gives us the statement of the lemma in 

the case that n is general. The case when s = 0 is complete too, since it only 

gives tame ramification. So, Go¢ is cyclic. Now assume s = 1. 

For/~'((x'))  N T use T~,. Consider the ex tens ion / f ( ( z ' ) )T , , /T , , .  It is of degree 

p. Denote the group of its Galois closure by H. Take one of the m factors f ,  of 

the polynomial relation between z'  and z' over T,,.  Then, H is its Galois group. 
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Call the stabilizer of ~,'((x'))Tx, in this group C. Then, [C] divides (p - 1)!. In 

particular, (IChp) = 1. Thus, H is an extension of a cyclic--prime to p--group 

C, by a group of order p. Also, consider the subgroup CI of C which centralizes 

the p-group of H. It is a normal subgroup that stabilizes K((x*))Tx,. The Galois 

Closure Lemma implies C1 is trivial. In particular, C has order dividing p - 1. 

Thus, the splitting field LI of fl over T~, has a two step description. It is a 

degree p extension of a field V. And, V is a cyclic degree k extensiou of T~,. 

Finally, consider the splittiug field of f(z) - z over/~'((z)). This is the com- 

posite of splitting fields of the m factors fl,---, fm of f(x) - z over T~,. Each 

contains the extension V. Then, above V, there are at most m cyclic extensions 

of order p. | 

Our next lemma allows us to draw conclusions about the lattice of fields be- 

tween K(x) and K(z)  from information about Goo. 

EMBEDDING LEMMA: Consider h E K[x]. Let G be the geometric monodromy 

group of the cover h: P~ --* P~. The lattice of subfields between K(x) and K(z)  

embeds in the lattice of subgroups between G¢¢(1) and Goo. Suppose in this 

embedding the/ield L goes to the subgroup GL. Then, [L: K(z)] = ( G o o :  GL). 

Proof: Use the notation of the Goo-Lemma. Suppose L is between K(x) and 

K(z). Since K(x) /K(z )  is totally ranfified over ~ ,  the ramification index e of 

cx~ in L is [L : K(z)]. By definition, this is the same as (G~ : GL) where GL is 

the stabilizer of L[f((z')) in K((z'))/~'((z')).  Conclude lattice preservation from 

the statement on degrees. That is, suppose L1 properly contains L2 with both 

fields between K(x)  and K(z).  Their degrees over/~'((z')) (after composition 

with K((z'))) remain the same. Therefore, their composites wi th /~((z ' ) )  still 

give proper containment. | 

4.d FURTHER COMMENTS ON THE INDECOMPOSABILITY STATEMENT. Lemma 

4.2 is well known (c.f. [Fr3]). 

LEMMA 4.1: Suppose f = fl(f2(x)) E K[x] and f l , f 2  E/~[z], deg(fi) = ni > 1, 
i = 1,2. // '(p, deg(/1)) = 1, then y = f;(y~(x)) with deg(/ ,)  = deg( / ; )  and 

f;, f; KIll. 

Proof: As in the Goc-Lemma, let z' = 1/z. Denote the splitting field of f (x)  - z 

over ~'((z')) by flf_~. The maximal tamely ramified extension M of/~'((z')) in 

this field contains the splitting field flf l-~ of fl  (x) - z. From the G~-Lemma, 
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M/[(( (z ' ) )  is Galois with group the cyclic group Goo/Hoo. Thus, ~ l , - z  is the 

unique degree nl extension of/<((z '))  in this field. Conclude from the Cocycle 

Lemma. | 

In Part III we use only group theory conditions to eliminate most monodromy 

groups as coming from exceptional indecomposable polynomials. In particular, 

we don't use any condition on the groups that says that we have a genus 0 cover. 

To stay within the group theory approach of Part III, Lemma 4.1 ~ shows Lemma 

4.1 has a more general group theory formulation. 

LEMMA 4.1': Assume 0 is primitive of degree n. Let G be normal in G. Suppose 

G contains a transitive subgroup Goo with a a unique subgroup of index m, 

1 < m < n, containing G¢~(1). Then G has no subgroup of index m containing 

G(1). In particular, if Goo satisfies the conclusion of the Goo-Lemma, G has no 

subgroup of index m prime to p containing G(1). 

Proof: The last sentence follows from the previous statement by considering the 

properties of Goo. Since Goo/Hoo is cyclic, it has a unique subgroup of index m. 

Thus, Goo also has a unique subgroup of index m. Now we prove the rest of the 

lemma. 

As Goo is transitive, G = Goo. G(1). Any subgroup M of G containing G(1) is 

of the form S. G(1) for S a subgroup of Goo. With no loss, adjoin Goo(1) to S to 

assume it contains Goo(1). Also, G = Goo. M implies [G : M] = [Goo : M N Goo]. 

Thus, if [G: M] = m, M = S.  G(1), where S is the (unique) subgroup of Goo of 

index m containing Goo(1). 

Now 0(1) normalizes G(1). Since M is the unique subgroup containing G(1) 

of index m in G, it follows that 0(1) normalizes M. Since 0(1) is maximal, this 

forces two possibilities. Either 0(1) is the normalizer of M; or M is normal in 

G. In the former case, M _< 0(1) N G = G(1), a contradiction. Now consider 

the latter case. Since 0 is primitive, every nontrivial normal subgroup of 0 

is transitive. On the other hand, since M contains G(1), M transitive forces 

M = G. This is also a contradiction. | 

LEMMA 4.2: Let L C L1 C L2 be a chain of ~nite separable extensions. Denote 

the Galois closure of L2/L by L2. Also, let the Galois closure of L2/L1 be L2 

and the Galois closure of L1/L be L1. Then C(L2/L) is a natural subgroup of 

G(L2/LI) n' x" G(L1/L). Here nl = [LI : L]. There is a natural representation 
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of G(L , /L )  of degree n,. The action of G(L, /L)  on G(L2/L,)  n' is through 

permutation of the coordinates from this representation. 

The next proposition tells us about Goo when f decomposes as f l ( f2(x) )  with 

deg(fl ) = p. Denote the inertia group over z = oo for f by Goo(f). 

PROPOSITION 4.3: Suppose f = f l ( f2(x))  E K[x] and f l , f2  E x~'[x]. Assume 

deg(f l )  = p, deg(f2) = m > 1, and (m,p) = 1. Let k be the integer such 

that Goo(fl) = Zip  x" Z /k  (k ip  - 1 as in the Goo-Lemma). Then, Goo(f) 

is ZIp x" Z/rn' with m' the least common multiple of m and k. In addition, 

the degree n representation of Goo(f) is on the cosets of the subgroup of Z /m '  

generated by m. 

Proof'. Use the notation of the proof of Lemma 4.1. Let G1 = G(f l f l - , / [ f ( ( z ' ) )  ) 

and G2 = G(l~l,-z/fi[((z')) ). From Lemma 4.2, G' = a(~1-dR((z'))) <_ 
G~ ~ x" G1. Thus, G' is a subgroup of 

(4.1) (Z /m)  p x" (Z/p x ~ Z/k).  

On the other hand, replace z in ~12-z by the zeros x l , . . . , x p  of f l ( x )  - z. 

The composite of tamely ramified extensions is tamely ramified. Thus, fli = 

f112-z,f~lt-z , i = 1,. . .  ,p, is a tamely ramified extension of .K(xi)((z')). There- 

fore, f~i/.K(xi)((z')) is a cyclic Galois extension. Conclude its degree is the least 

common multiple m' of m and k. Note: .K(x l , . . . ,  xp)((z')) is contained in each 

of the ~is. This means the composite of the ~2is is f~y-z. Since there is only one 

extension of degree m' /k  of K ( x l , . . . ,  xp)((z')), all the f~is are equal. Conclude 

~2i_z is a tamely ramified extension of/~'(xl )((z')) of degree m'. 

Also, as in the Goo-Lemma, there exists a field L1 with /~((z'))  C L1 C 

~ '((x ' ))  and [L1 : /~((z'))] = m. Again from Lemma 4.2, G' is a subgroup of 

(Zip x ~ Z /k )  m x ~ Z/m.  In addition, G' maps surjectively to the kernel of the 

projection on any one of the factors Zip ×s Z/k.  This, with (4.1), identifies G' 

with Zip  ×s Z /m '  where the action of Z/m'  is through Z/k.  We are done if we 

identify the subgroup of G' that f ixes/~((x ')) .  This, however, is a subgroup of 

index m in Z/m': the subgroup generated by m. II 

COROLLARY 4.4: Consider f as in Prop. 4.3. The mlmber of inequivalent de- 

compositions o f f  as f~(f~(x)) with fl of degree p does not exceed p. Also, it is 

1 if k does not divide m. In this case, the Indecomposability Statement holds: 

we may take fl  in Prop. 4.3 in K[x]. 
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Proof: Apply the Embedding Lemma (above). The number of inequivalent 

decompositions for f cannot exceed the number of subgroups of Goo(f) of index p 

that contain Gee(f)(1). There are exactly p subgroups of index p, the conjugates 

by the Zip of Z/m'. Only the trivial conjugate contains Goo(/)(1) = mZ/m' 
when m' ~ m. | 

Corollary 4.4 points to the key test case for the Indecomposability Statement 

when p[[n. Use the notation of Prop. 4.3: deg(fl) = p; k [ p -  1; and the geometric 

monodromy group of the cover from fl  is the natural semi-direct product Z/p x '  

Z/k. Even when k = m we don't know the full story, but Example 11.5 is the case 

p = 7 and k = ra = 3. Note: Lemma 1.1 shows the Indecomposability Statement 

is true when m = k = 2. Again, Corollary 11.2 gives many counterexamples to 

the Indecomposability Statement where deg(f) is a power of p. 

Remark: Minimal degree counterexamples to ~Ae Indecomposability S~atemen~. 
Suppose G (resp., G) is the geometric (resp., arithmetic) monodromy group of 

a cover given by a polynomial f .  Suppose f is decomposable over K. This 

translates to existence of a group properly between G(1) and G. Similarly, de- 

composing f over K translates to existence of a group properly between 0(1) and 

G. A minimal degree counterexample to the Indecomposability Statement would 

be an indecomposable polynomial over K that is decomposable over/~.  This 

would correspond to G and a normal subgroup G with the following properties. 

As a subgroup of S,,  G is primitive and G/G is cyclic. Yet, G is not primitive. 

We translate to subgroups of G. We have, 0(1) N G = G(1) properly contained 

in distinct subgroups Hi C G, i = 1 , . .  ,k, k > 1. These groups Hi are conjugate 

by elements in G. Furthermore, there is no group H properly contained between 

G(1) and G that is invariant under conjugation by 0(1). (This last would violate 

primitivity of 0.) 

Of course, this group situation should correspond to a polynomial giving G as 

the arithmetic, and G as the geometric, monodromy groups. | 

P A R T  II.  F I N D I N G  E X C E P T I O N A L  P O L Y N O M I A L S  

5. Except ional  po lynomials  of  prime degree 

Throughout §5-§8, we assume n, the degree of an exceptional polynomial f ,  is 

a prime. The major case is when the prime is p, the characteristic of Fq. With 
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no loss we search for monic exceptional polynomials: the leading coefficient of 

f E Fq[z] is 1. 
When (p, n) -- 1, the technique below--modeled on the proof of the Schur con- 

jecture [Fr3]--easily shows the analog of the Schur conjecture. Exceptional poly- 

nomials must be compositions of (twists of) linear changes of cyclic or Chebychev 

polynomials. As in [Mu], they may not look like standard cyclic and Chebychev 

polynomials over the base field. See also Addendum B. Now assume p = n. We 

apply Burnside's theorem to the geometric monodromy group G of an exceptional 

polynomial f (as in §3). 

BURNSIDE'S PRIME DEGREE THEOREM [Bu]: Let G be a transitive group of 

prime degree p. Then, G is doubly transitive, or it is a subgroup of the af~ne 

group Z / p  x • (Z/p)* = Ap that contains a p-cycle. 

The Exceptionality Lemma of §3 implies G can't be doubly transitive. There- 

fore, G is a transitive subgroup of Ap. There is no simple analog of Burnside's 

result, as we use it here, in the general case when p[ deg(f), but deg(f) ~ p. 

Addendum B notes why the composite--not prime--degree case in the original 

Schur problem is easy. Since [Fr3] works with geometric monodromy groups in 

characteristic 0, ramification over oo gives us an n-cycle in the group. A result of 

Schur excludes composite degree [Sch2]: A primitive group of composite degree 

n with an n-cycle is doubly transitive. Again, this violates the Exceptionality 

Lemma (§3) statement about G. This holds also in positive characteristic, if 

(n,p)  = 1. Now we return to the case n = p. 

Assume from Burnside's Theorem that G C .Ap. Let r be a generator for a 

complement to the Sylow p-subgroup of G If r = 1, then G is cyclic of order 

p. Such a cover comes from an Artin-Schreier polynomial. These are of form 

f ( x )  = x p + ax. Put ¢(x, y) = f(x)-f(y) = ( X  - -  y)p--1 .~ a as we do in §7. Over x--y 

any field that doesn't contain p - 1-th roots of a, the additive polynomial f ( x )  

is exceptional. We now consider polynomials that occur when r ~ I has order k 

dividing p - 1. Some statements in the next three sections require interpreting 

the case k = 1 carefully. To avoid that, we've given it a special place here. 

The next two sections simplify characterization of exceptional f of degree p. 

They show we want a genus 0 degree p cover X --* p1 with two points of p1 

ramified. One of these is oo and it is totally ramified. The respective inertia 

groups for points of the Galois closure J~ ~ p1 will be G and (r). In §8, we 
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explicitly produce equations for such polynomials over the finite field in question. 

There are explicit parameter spaces over Fq for these, for each p and choice of 

k = ord(r) .  

Also, the arithmetic monodromy group of the cover must satisfy the conditions 

of the Exceptionality Lemma of §3. We must find lFq points on these parameter 

spaces for which the corresponding polynomials give covers with an explicit arith- 

metic monodromy group. Each value of k has a parameter variety and an explicit 

computation for Fq points on this variety that give an exceptional polynomial. 

6. A p p l i c a t i o n  o f  t h e  R i e m a n n - H u r w i t z  f o r m u l a  

Continue the notation of §5. That  is, k = ord(r) ,  r is an element of order k. 

Here, G is the geometric monodromy group of an exceptional polynomial f of 

degree p. Note: In our first lemma, k = 1 would require special wording. In this 

case there are no finite branch points. Therefore, we assume k > 1. 

RAMIFICATION LEMMA: Under the hypotheses above, f : P~ --~ P~ has but 

one finite branch point zo. Above zo, ~_l points of P~ ramify, each of index 

k = ord(T). One point above zo does not ramify. The rest of the ramification 

lies over ~ .  

Proo~ The Riemann-Hurwitz formula, says the following: 

( ,2)  2(p + g - 1) = Z ord . (D . ) .  
xE~ ~- 

Here Dz is the different of the cover computed at points z E P~. Also, g is the 

genus of the curve covering 17~ [FrJ; §2.9]. Here this cover is P~, of genus 0. 

Suppose we have a characteristic zero type description of covers from Pale- 

mann's existence theorem as in §2. That  is, we have a = ( a l , . . . ,  a t ) ,  a descrip- 

tion of the branch cycles of the cover. We actually get such when the cover is 

tamely ramified: all inertia indices are relatively prime to p [Gr]. Recall that 

each ai corresponds to one of the branch points of the cover, zi. Each disjoint 

cycle of ai is a place holder for a point of the fiber of the cover that lies over zi. 

Let xi be a point over zi: f ( x i )  = zi. Its ramification index e = e(xi /z i)  is the 

order of this disjoint cycle. There is such a ai precisely when (e(x i /z i ) ,p)  ~- 1 

for each xi lying over zi. In this case, the contribution of xi to the right side of 

(.2) is e(xi /z i)  - 1. If, however, one of the inertia indices is divisible by p, the 
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computation doesn't come directly from group theory. Therefore, we do it by 

hand. 

Take 1 /x  -- x' as a uniformizing parameter for oo E P~, and 1 / z  = z I for 

oo E P~. Rewrite the relationship between x and z for x' and z'. Then, compute 

the inertia index of the point 0 lying over the point 0. We can handle the details 

in this form. 

Write f ( x )  = x p + a l x  p-1 + . . .  + a p - l x  + ap, or 

= z ' .  
I + a , (x ' )  + . . .  + ap_l(X') p-1 -I- ap(xt) p 

Compute the order of the place x I = 0 in the expression 

0( ) 
Ox' 1 + a l x '  + . . .  + % - l ( x ' )  ' - 1  + a , ( x ' ) '  " 

Remove the expression with 0 order. That  leaves the order of - ( x ' ) P ( i a i ( x ' )  i-~).  

Here i is the smallest integer such that iai is not zero in K.  Note: When k = 1, 

this is i = p - 1, the additive polynomial situation. 

Look at the Riemann-Hurwitz formula (,2). Since g = 0, the left side is 

2(p - 1). The contribution of e~ to the right-hand side is p + (i - 1). Suppose 

a fn i te  branch point were to have wild ramification above it. Then, the same 

computation shows that it, too, would add at least p to the right side of (,2). 

This exceeds the allowance for the right side. So, the contribution of other points 

will be from cyclic inertia group generators (in G). 

Each finite value of z adds (k' - 1)( kF-~,l ). Here, k' is the order of the corre- 

sponding branch cycle r .  To compute the contribution to the Riemann-Hurwitz 

formula write out the disjoint cycles for the action of r on {0, 1 , . . . ,  p -  1}. Some 

conjugate of r is the action of multiplication by a nonzero integer t. Multiplica- 

tion by t fixes 0, and it has orbits of length k' on the rest of the integers. Each 

orbit corresponds to exactly one point above z. The ramification index is the 

length of the orbit. 

With this, ( .2) looks as follows: 

( p - i )  ( ~ 1 )  
(,3) 2 ( p - 1 ) = p - l + i + ( k  I - 1 )  ~ + ( k ~ - l )  + . . - .  

Also, i > 0 in our case. There can only be one nonzero k-term on the right- 

hand side, or this would exceed the left-hand side. We have simplified (.2) to 
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p - 1 = i + (k' - 1)(~a~,l). In particular, there is only one finite branch point, of 

order k'. Call this z0. 

Consider the Galois closure ) (  of the cover p1 ._~ p~ (over /~). Form the 

quotient of .~ by the Sylow p-group of G. It is a cyclic cover Y ~ P~ of degree 

k. It is also ramified (tamely) over z0 and co. The ramification index over z0 is 

the same as for the whole cover ~" -~ P~. Therefore, k I = k. | 

7. C ove r s  sa t i s fy ing  f o r m u l a  ( .3)  

Continue the discussion of §6. We took z0 to be the unique point in the finite 

plane over which the cover f : P~- --* P~ is ramified. (Exclude the case k = 1, 

and f an additive polynomial.) Indeed, the geometric monodromy group of this 

cover is .Ak,p = Z/p x '  Z/k. Here k divides p - 1, and Z/k acts on Z/p through 

multiplication of an integer of order k in F~. We now construct such polynomials 

for each prime p > 3, and each finite field K (of characteristic p). Appendix A 

illustrates with the special case p = 5, k = 2, without general analysis. 

THE EXTREME CASE FOR A GIVEN VALUE OF k. There is an extreme case, 

when 7~(z, y) = f(~)-f(Y) is irreducible over K.  Over R" we know that  ~(z,  y) x - - y  

has ~ components, each of degree k. In the extreme case these components are 

conjugate over the field extension Kr_~ of degree ~ over K.  Then, the Galois 

closure of K(z)/K(z) is K(z) where G(K(z)/K(z)) = (Z/p)*. In addition, 

K(z~) ® Kr.~ gives ~ copies of the same degree k extension L of Kr_~(z) .  

Further, regard L as the function field of the curve ~(z,  y) = 0 over K(z). 
Theorem 8.1 makes a statement on this extreme case. 

N6w consider the form of f(z) -zo to satisfy the conditions of the Ramification 

Lemma of §6. This produces a polynomial h(z) of degree t = ~ with these 

properties: h(z) k-1 is a constant multiple of f ' ( z ) ;  and h(x) k divides f ( z )  - z0. 

In the extreme case, its zeros are conjugate over K.  With no loss, take z0 = 0. 

Also, assume the unramified point over z0 is z0 = 0. With a linear change of 

variables normalize f to conclude xh(x) k = f(z). Take the derivative of both 

sides of this expression. This relates h and h I as follows: 

( ,4) kxh'(z) + h(z) = a for some a e g * .  

§8 displays the monic polynomials that satisfy (.2): with z0 = 0 having the 

rational place z0 = 0 over z0. These are the normalized exceptional polynomials 
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of degree p. This gives explicit f s from specialization of parameters for such a 

polynomial h satisfying (,4). 

8. Actual  product ion  of  f s 

Rewrite equation (,4) as a - h(x) = kzh'(z) .  By inspection, a solution of this 

differential equation is h(x) = ux t + a for some constant u. If hi and h2 are 

two (monic) solutions of degree t, their difference g satisfies the equation - g  = 

kzgl(z). Inspect the leading coefficients of this expression to conclude 

(8.1) kv = - 1  where v < t is the degree of g. 

There is no value of v that satisfies (8.1). Thus, any normalized exceptional 

polynomial f ( x )  of degree p is of the form 

(8.2) f ( z ) = z ( x '  +a)  k. 

We have only to find the values of a for which f is exceptional. As in §7, this 

happens exactly when x t + a has no zeros in Fq. Further, the extreme case of §7 

occurs exactly when x t + a is irreducible in Fq. Write d = - a .  With no loss we 

are inspecting the values of d for which either 

(8.3) (i) x t - d has no zeros, or (ii) x t - d is irreducible. 

Given either condition in (8.3), from any nonzero u we get a normalized f = fd 

above that is exceptional. This is quite elementary. We just state the result. 

Consider the set 

£.kdCJ{d E Fq [ fd(X) is exceptional}. 

Let £k be the set 

{ d c F ~  ] f~(*)-f~(Y)._y is irreducible over Fq }.  

Here ¢(t) is the Euler C-function at t. 

THEOREM 8.1: Dickson's conjecture [D] is true: Each normalized exceptional 

polynomial of prime degee p over Fq is of form (8.2). In particulax, [/~k[ is exactly 

(q - i ) ( i  - ~-). Consider k > 2 with k ip  - i .  Then, I£kl is exactly (q -- i )  * ( °  
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9. A hierarchy of  group theory  condit ions 

We have remarked on the Schur conjecture paper ideas [Fr3]. In particular, when 

(n, p) = 1 they prove that indecomposable exceptional polynomials are reductions 

of cyclic and Chebychev polynomials. If n = p, §8 gives a satisfying description 

of the exceptional polynomials. 

If (n,p) = 1, §5 notes an n-cycle generates Goo. When p[[n, Goo is an ele- 

mentary abelian p-group by a cyclic p'-group. Results that lead to Theorem 14.1 

of §14 show there ave three types of primitive groups G of composite degree n 

containing a group of type Go¢. (See the example of §10.) 

The two main types are affine group cases appearing from Burnside's Theorem. 

The last are doubly transitive groups, which we eliminate using the orbit con- 

dition from the Exceptionality Lemma. This will leave only the examples of §8 

as indecomposable exceptionM polynomials whose degrees satisfy Pl I n. Theorem 

11.1 has examples of exceptional polynomials when n = p", a > 2. 

We list group theoretic statements that come from an indecomposable excep- 

tional polynomial f. Carlitz's conjecture is the case 2In. In particular, consider 

the possibility of a counterexample of minimal degree to Carlitz's conjecture. 

It would have a geometric monodromy group G and an arithmetic monodromy 

group G C 3', passing the following tests. 

(9.1) G is primitive. 

(9.2) The quotient G/G is cyclic, 

(9.3) G contains a subgroup Goo with p-Sylow Hoo '~ Goo and Goo/Hoo cyclic. 

(9.4) 0(1) fixes no orbit of G(1) acting on {2, . . . ,n}.  

(9.5) G satisfies the Polynomial R-H Lemma below. 

Condition (9.3) restates the conclusion of the Goo-Lemma. 

Recall the Riemarm-Hurwitz formula (.2) in §6. As there, Dz is the different 

of the cover by f at a point x 6 pl_. We can capture the data for ramification 

directly with group theory. To explain this, turn again to the characteristic 

0 analog. There, as in §2, a description of a cover comes from a description 

a = (al , . . . ,ar)  of its branch cycles. The cover X ~ p1, however, that we 

seek may not be Galois. Regard it as the quotient of the associated Galois cover 

_.., p1 by a subgroup G(1). Label the representation of G on the cosets of G(1) 

as T :  G ~ S,.  Here n = [G: G(1)]. 

Given a we have this practical version of (.2): 2(n + g - 1) = ~[=1 ind(T(ai)). 

For a 6 S,,  ind(a) is n minus the number of disjoint cycles--including those of 
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length 1-- in a. 

Still, we don't  have branch cycles in positive characteristic. Is there a practical 

calculation replacement for this formula? Answer: Yes, if we add extra data 

to the groups that appear as inertia groups when p divides their orders. We 

have a conjugacy class of inertia groups attached to each branch point. Take a 

representative of this conjugacy class to be Gi. Estimating the contribution of Gi 

to the right hand side of ( .z)  requires us know the higher ramification subgroups 

of Gi (as in [CaF; §1.9]). 

These give a filtration of Gi as 

(9.6) Gi = Gi,o D Gi,1 D Gi,2 D . . .  D Gi,t~. 

The filtration has these properties. For j = 1 the quotient is a cyclic group of 

order prime to p, and Gi,i is normal in Gi,i-1. For j > 1, the quotient is an 

elementary p-group: a sum of Z/ps .  Also, the group in the j t h  position has a 

natural weight attached to it. We've left this traditional point out of our labeling. 

This filtration derives from existence of an actual cover X ~ p1. It isn't 

group theoretic alone. These higher ranfiflcation groups give sufficient data to 

compute the contribution to the different for the ith point [CaF; p. 36]. With 

this we have the computation of the genus of X. Computing the genus of X 

requires an analog of ind(T(ai)). We name it for the computation in [Fr2; §2] 

that gives it: h i ghe r  r ami f i ca t i on  da ta .  We don't redo this intricate definition 

here. The next lemma denotes this hrd(T(Gi)).  We saw in §6 that a different 

computed from wild ramification makes a large contribution to the right side of 

(.2). Indeed, the contribution is sensitive to the weights attached to the groups. 

A later paper will apply this to affine groups of degree p~ (see §1) to determine 

which of these are monodromy groups of exceptional polynomials. We complete 

our comment on this formula's relation to a characteristic p analog of Riemann's 

existence theorem. 

Suppose we start with a group G, and with r conjugacy classes of subgroups 

Gi of G, i = 1,. . . ,r .  Assume also that G is the monodromy group of a cover 

X ~ p1, of genus 0, with the Gi s as inertia groups. Then, there must be a 

filtration of each group according to (9.6). We regard this as a priori data that 

should figure in Riemann's existence theorem. The formulations of such a result 

to date (see Appendum C), don't incorporate such data. We formulate our next 

lemma using this. One of the branch points is oo. When Pll n, §6 has already 

discussed how to compute hrd(T(Goo)). 
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POLYNOMIAL R-H LEMMA: Leg f be any (separable) polynomial of degree n. 

Assume f de~nes a cover with geometric monodromy group G embedded by 

T: G --* S ,  in S,,. Label the inertia groups associated to the r branch points as 

Gi, i = 1 , . . . ,  r. Include the higher ramification data as part of this information. 

Then, the cover f: P~ --* P~ satisfies 

(9.7) 2(n - 1) = ~ hrd(T(Gi)). 
i----1 

In addition, one of the Gi--playing the role of G,o--is transitive in the represen- 

tation T. 

Remark 9.1: A result of(9.4). We use a practical form of (9.4) later. Each orbit 

of 0(1) on {2, . . . ,  n} joins two or more orbits of G(1) of the same cardinality. 
| 

10. Carlitz's conjecture and general exceptionality 

Here is an example of a group we must eliminate in considering Carlitz's con- 

jecture. For this case n = 28 and p = 7. Take G to be L2(8) = SL2(Fs). This 

group has a primitive permutation representation of degree 28. The stabilizer of 

a point is Dg--the dihedral group of degree 9 and order 18. We get this repre- 

sentation by conjugation on the Sylow 3-subgroups. The permutation character 

is 1 + 91 + 92 + 9s. That is, it is the identity representation plus three different 

irreducible degree 9 characters. 

Consider Ns~,(G), the normalizer of G in S2s. For the stabilizer of 1 in this 

group use N(1). Then, N(1) \ G(1) contains an element of order 3. This element 

joins the three orbits of G(1) of cardinality 9. 

We show there is no transitive subgroup Goo as in the Go~-Lemma (condition 

%,) with e (9.3)). One 7-Sylow of G consists of matrices of form (0 a 

The usual notation for the group of semi-linear transformations (including the 

pth power Frobenius map) is FL2(8). This must be G. Consider the subgroup 

S of elements of FL2(8) that normalize this. The following collection generates 

S: diagonal matrices; an element of G that interchanges the diagonal elements; 

and the Frobenius element. Exactly one power of 2 divides ]S[. Thus, S isn't 

transitive on the 3-Sylows. Th i s  example fails (9.4). There is no polynomial of 

degree 28 over a finite field of characteristic 7 that is exceptional. Still, there 

may be a genera/exceptional cover of degree 28 (see Theorem 10.1). 
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Remark: Degree 28 example when p = 2. The group G = SL2(Fs) satisfies all 

group theoretic conditions (9.1)-(9.4) when p = 2. Indeed, this group appears in 

the conclusion of Theorem 14.1. Akin to previous comments, producing such a 

cover, with an appropriate arithmetic/geometric monodromy group relation, is a 

test for a characteristic 2 version of Riemann's existence theorem (§11). 

Definition: General Exceptional Covers. Let 4 : X ~ Y be a cover of nonsin- 

gular projective curves defined and absolutely irreducible over Fq. Let X1,2 be 

the fiber product X x y  X of this map as in §3. Then (4 ,X )  is a Schur cover 

when the following holds. The fiber product with the diagonal removed leaves a 

curve X1,2 \ A with no absolutely irreducible components over Fq. We say the 

cover is exceptional, in imitation of the polynomial ease. 

As in §3, consider the geometric and arithmetic monodromy groups G C G C 

S,,. Here n is the degree of 4. Both groups act on the integers {2 , . . . ,  n}. Denote 

the stabilizers of 1 in these representations by 6(1) and G(1), respectively. The 

proof of the Exceptionality Lemma applies here as well. 

GENERAL EXCEPTIONALITY LEMMA: The cover 4 : X ~ Y over Fq is excep- 

tional i f  and only i f  G(1) fixes no orbit of G(1) on {2, . . .  ,n ) .  This is equivalent 

to the following arithmetic property. Denote [G : G] by s. For t with ( t , s )  = 1, 

each Fq, non-branch point of Y has exactly one Fq, point of X above it. In 

particular, i f  4 : X ~ Z factors through Y ~ Z, then 4 : X ~ Z is exceptional 

i f  and only i f  both X ~ Y and Y ~ Z are exceptional. When X is of genus 

zero, some rational function gives 4. Then, for t with (t, s) = 1, each Fq, point 

of F~ has exactly one F¢ point of X above it. Indeed, this holds more generally 

even i f  X is not of genus O, i f  Y is of genus O. 

Proof'. The proof of the first sentence follows exactly the proof of the special case 

in the Exceptionality Lemma of §3. The second sentence comes from interpreting 

the action of the Frobenius using the nonregular analog of the Chebotarev Density 

Theorem [FrJ; Prop. 5.16]. (Actually, one must follow the proof here to see the 

role of the branch points. The original proof in [Fr6] is bet ter  for this.) Now 

consider the statement when 4 : X ~ Z factors through Y ~ Z. 

Suppose both Y ~ Z and X ~ Y are exceptional. We show X ~ Z is 

exceptional by showing that each non-branch point z 6 Z over Fq, (with (t, s) = 

1) has above it just one F¢ point. Suppose not. Let z l , z2  be Fg, points above 

z. If their images//1, I/2 in Y are equal, this violates exceptionality for X --* Y. 
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Thus, assume Yl ~ Y2. Then, these distinct Fq, points both lie over z. This 

violates exceptionality for Y ~ Z. 

Now assume X -* Z is exceptional. Here are the implications with the last 

paragraph notations. Above each non-branch Fq~ point of Z, there is an Fq~ 

point of Y: the image in Y of the Fqt point of X above z. Thus, the Riemann 

Hypothesis Lemma below says Y -~ Z is exceptional. Above each Fg, point of Y 

there is at most one Fq, point of X, or we would violate exceptionality of X --* Z. 

Again, the Riemann Hypothesis Lemma says X --* Y is exceptional. 

Finally, consider the case Y is of genus 0, but X may not be. The concluding 

statements of the theorem are that X has exactly one Fqt point above each Fq, 

point of Y. When X is of genus 0 this is already in [Fr4]: this works exactly as 

for polynomials. The Riemann Hypothesis Lemma shows this under the weaker 

assumption Y is of genus 0. | 

RIEMANN HYPOTHESIS LEMMA: Consider a cover X --~ Y of absolutely irre- 

ducible nonsingalar projective curves. Suppose one of the following holds for 

infinitely many ~. Either: 

(i) above each non-branch Fq, point of Y there is at most one Fq, point of X; 

o r  

(ii) above each non-branch Fq, point of Y there is at least one Fqt point of X.  

Then, X ---* Y is an exceptional cover. Lu addition, i f  X -* Y is exceptional, 

and Y is of genus O, then above each Fq, (including branch) point of Y there 

is exactly one Fqt point of X.  This holds for each positive integert relatively 

prime to s as in the Genera/Exceptionality Lemma. 

Proof: From the Riemann Hypothesis, both X and Y have qt + O(qt/2) points 

over Fq~. The O estimate is bounded by 2 times the genus of the curve. The 

Pdemann-Hurwitz formula of §6 bounds the number of branch points of the cover 

X --* Y by a linear expression in the genus of X. 

Suppose (ii) holds, but X --~ Y isn't exceptional. Let G be the arithmetic 

monodromy group of the cover. Use notation from §3. Then, there exists r E 

0(1) satisfying these: T fixes at least one other integer from {2 , . . . , n} ;  and 

restriction of r to Fq is the Frobenlus (cf. Lemma 13.1). Assume (8,t) = 1, as in 

the General Exceptionality Lemma. 

The nonregular analog of the Chebotarev Density Theorem [FrJ; Prop. 5.16] 

says there are cq t ÷ O(q t/2) points Y E Y over Fq, which realize (the conjugacy 
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class of) r as the Artin symbol of a point of Y over y. Here c is a positive constant, 

independent of t, as is the O constant. Above each such point there are at least 

two Fq, points of X.  Thus from (ii), we have a lower bound of (1 + c)q t + O(q t/2) 
for the Fq, points of X.  This contradicts the Riemann Hypothesis. 

The argument for (i) is similar. Here, however, we would have r E G fixing no 

integer from {1, . . .  ,n} and whose restriction to Fq is the Frobenius. Above each 

such y E Y with r as Artin symbol there are no Fq, points of X.  Thus, we have 

an upper  bound of (1 - c)q t + O(q t/a) for the Fq, points of X.  This contradicts 

the Riemann Hypothesis. 

Now assume Y has genus 0. Then, there are qt + 1 points over Fq, on Y. 

The last sentence of the lemma follows from the argument  of [Fr4] if we show 

X also has exactly qt + 1 points over Fq,. To see this, we use the more precise 

estimate from the Riemann hypothesis. Let g be the genus of X.  Then, X has 

2g t points over Fq,. Here the a l  s are algebraic integers of absolute qt + 1 + Y'~-i=l ai 
v a l u e  ql/2. 

Let Nt be the number of Fq, points on X.  From above, for (t, s) = 1, Nt _q t_  1 
is bounded by an estimate of the points on X over branch points of Y -- p1. This 

S de[ ~'~2g t = 0. First: bound is independent of t .  We want to show this implies t = z.,i=l ai  

There is a subsequence T of t s for which St is a fixed constant. Let tl be the 

minimal value in T. Then 

2g 

(10.1) s , , -  s , = o =  a l l0 -  d-"). 
i=1 

Put  the expression with am on the left side and divide both sides by 1 - a~ -t '  
For large t, the ratios (1 - _t - t l  '~i )/(1 - atl -t`) approach (ai/al) t-t~. Conclude, 

for t E T, that  St = O. 
The last argument shows there are at most a finite number  of t with (s, t) = 1 

for which St is nonzero. For a given positive to relatively prime to s, consider 

the ari thmetic progression Tto = {to, to + s, to + 2s , . . . } .  We are done if we show 
2g Aie2~rikOi St = 0 for all t E Tto. Rewrite Sto+ks as qk~S't with S~, = ~ i = 0  . Here 

Ai -- a i to and 0i is real, i = 1, . . . ,  2g. We know S~ = 0 for k large and that  St is 

an integer for all t. 

Suppose for an arbitrari ly large value of k the vector ( e2"k°~ , . . . ,  e 2~ikO2s) is 

suitably close to a vector of 1 s. Then, 0 = Sto+sk/q ks --= S~ is close to Sto. For 

this, we use a box principal argument. 
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The function k ~ (e2~rikOl, . . . ,  C 21tik#2°) is from the positive integers into a 

(compact) toms. Thus, there are two integers kl, k2, arbitrarily far apart, whose 

images are as close as desired. Take k = k2 - kl to complete the proof. | 

If Y isn't of genus zero, we don't know if exceptionality implies there is exactly 

one Fq point of X above each Fq point of Z. That is, this property may not hold 

over the branch locus of the cover. This is the subtlety in the proofs of [Fr4]. 

When the cover above is of genus 0, [Fr4] uses that there are as many Fq points 

on X as on •1 

We can't get a polynomial out of the degree 28 primitive group above. Still, 

for example, there might be f :  P~ --~ P1 z where f E Fq(z) is a rational function. 

For applications to encryption from permutation maps (see [LN]) this would be 

equally valuable. Indeed, we get these in the analog over residue class fields of a 

number field. That is, there are rational functions, of prime degree--not twists 

of cyclic or Chebychev polynomials--that give one-one maps on infinitely many 

residue classes Fp. These come from elliptic curves and the theory of complex 

multiplication [FrS]. We conclude this section by generalizing the Cohen-Wan 

result (§1) from exceptional polynomials to any exceptional cover. 

THEOREM 10.1 : There is no exceptional cover, X .-4 Z, of nonsingular absolutely 

irreducibIe curves, of degree 2p where p is a prime. 

Proof." We use the arithmetic and geometric monodromy groups of X --~ Z. 

These are of degree 210 as in the General Exceptionality Lemma. Suppose first 

isn't primitive. Then, X --~ Z factors over Fq as X ~ Y ~ Z where either the 

first cover or the second is of degree 2. From the General Exceptionality Lemma, 

both covers in the sequence must be exceptional. We have only to show, for large 

t, a cover of degree 2 must have Fq, non-branch points over which it has more 

than one Fq, point. To fix the ideas, use notation from the case Y ~ Z is of 

degree 2. 

Any Fq, point y 6 Z that doesn't ramify has a conjugate Fg, point y ' :  y and 

y '  both lie over the same point of Z. From the Riemann hypothesis, if t is large, 

then Z has approximately qt points from Fq, on it. Excluding branch points of 

the cover Y ~ Z, these points occur in pairs that  go to the same point of Z. 

Thus, approximately qt/2 of the points of Z have no Fq, points of Y above them. 

For t targe, this exceeds the number of branch points. Thus, we contradict the 

General Exceptionality Lemma. We may now assume (~ is primitive. 
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We may apply Wielandt's Theorem [We] as in §1 if G is primitive--(9.1) of 

§9---of degree 2p. This follows from Lemma 1.1. [] 

Remark 10.2: Curves that aren't exceptional covers of p1. Consider a nonsin- 

gular, absolutely irreducible curve X over a finite field Fq. Suppose X has a 

presentation as an exceptional cover of pl.  Then, the General Exceptionality 

Lemma shows X has exactly q + 1 points over Fq. This gives a criteria for a 

curve to have no presentation as an exceptional cover of p1. It also raises ques- 

tions about detecting the possibility of such a presentation from knowing just 

the number of points on X over finite fields. | 

11. W h a t  if  tests  (9 .1 ) - - (9 .5 )  succeed? 

Two problems remain. In characteristic 0 the next step is to find actual elements 

(~rl , . . . ,  ~r) with g -- 0 in the Riemann-Hurwitz formula (§2). Assume the ~i s 

are in conjugacy classes that have already passed this test. Also, we must have 

these two conditions. 

(11.1) The product or1 . . .  ~r is 1. 

(11.2) a l , . . . ,Crr  generate G. 

In positive characteristic, we must replace branch cycles by general inertia 

groups as in §9. No one has an acceptable replacement for these that uses the 

higher inertia groups (see Addendum C). Here is one reason the results so far 

of Abhyankar, Harbater, Raynaud and Serre don't apply. Ramification over oo 

has mixed tame and wild parts. A replacement for these conditions must keep 

relations from tame ramification given by the groups Gi,o/Gi,l. We don't  want 

to lose the combinatorial tools from Grothendieck's theorem. 

Finally, suppose you have a replacement test for (11.1) and (11.2), and all else 

is in order. Then, you must do as the Hurwitz space theories do in 0 characteristic 

(c.f. [Frl]). Find out if actual covers have the correct arithmetic properties. For 

now we won't worry about this. 

Theorem 8.1 finds all appropriate polynomial maps of degree p. The result is 

a definitive list. §1 suggests a complete classification of exceptional polynomials 

requires applying this analysis to aitlne groups of degree p~. Here is a brief foray 

into this domain. We show the analysis of §5-§8 applies to classify exceptional 

polynomials f of degree n = p" with arithmetic monodromy group of form V x s C. 

Here C C GL(V) is cyclic, acting irreducibly on V = (Fp)" (c.f. §1). Note: This 

automatically implies ([C[,p) = 1 (cf. the beginning of the proof of Theorem 
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11.1). The geometry monodromy group will be V x s D, with D a subgroup of 

C of order k. In fact, D need not act irreducibly (see Cor. 11.2 below). As 

previously, let t = p?~-l. 

THEORr, M 11.1: Suppose f is an exceptional polynomial f of degree n = p= with 

arithmetic monodromy group of form V x s O, G' cyclic acting irreducibly on V. 

Then, f : P~ ~ P~ has exactly one finite branch point zo. Above zo, ~ points 

of P~ ram/fy, each of index k. One point above zo does not ramify. The rest of 

the ramification lies over oo. 

Proof'. Suppose a cover X ~ p1 is of degree p~ and has arithmetic mondromy 

group G = V xS C with C = (r) acting irreducibly on V = (Fp)=. Let v0 E 

V \{0}.  Since C acts irreducibly, V" has the form Fp[C](v0); it is the orbit of v0 

under the group ring of C. 

As C is commutative, the group ring is a direct sum of fields. In particular, 

we may identify V with Fp,, the finite extension of Fp of degree a. Then, r acts 

as multiplication by an element of Fp, (of degree a over Fr). 

As in the statement previous to the theorem, the geometric monodromy group 

is G = V x" D with D a subgroup of C of order k. The remainder of this 

computation resembles the Ramification Lemma proof of §6. We assure the 

branch cycle situation is similar to the examples there. That  is, there is only one 

finite branch point, and the places above it ramify tamely. The rest of the proof 

has three parts. 

PART 1: Application of R-It (,2). As in the Ramification Lemma of §6, ram- 

ification over oo contributes p~ + i - 1 to (,2). Here i is the minimal integer 

such that iai # O, with ai the coefficient of z p ' - i  in f (z) .  Thus, the Pdemann- 

Hurwitz formula gives 

(11.3) 2(p: - 1) = pa + i - 1 + { contributions from finite ramification }. 

PART 2: There is no finite wild ramification. Suppose Gi is the inertia group of 

a place of X above the finite branch point zi. Assume also pl[Gi[. Since V is the 

p-Sylow of G, there exists a E Gi t3 V \{1}.  In particular, a moves every integer 

in the degree p~ representation of G. Basic ramification theory tells us each point 

of z E X over zi ramifies wildly. Each such z contributes at least one less than 

its ramification index to the right side of (11.3) and more if z is wildly ramified. 
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In particular, Gi contributes at least pa to the right side of (11.3). Thus, there 

can't be any wildly ramified finite branch points. 

PART 3: One finite tame branch point. Assume we have a genus 0 cover ¢ : 

X --* pl  with geometric monodromy group G. In addition, the cover we seek 

has degree pa and ramifies totally over oo. As in §6, we want to find Goo and 

the finite branch points. Go to the Galois closure ¢ : ) (  ~ p1. Then, form the 

cover X / V  --* p1. This is a cyclic cover of degree k. Thus, all ramified points 

have tame ramification. Denote these branch points by z l , . . . ,  zr. Take zr to be 

co. There must be at least one other branch point; ( .2) shows tamely ramified 

covers of the sphere have at least two branch points. Also, the gcd of the orders 

of the inertial group generators of these branch points must be k. 

Now look at the contribution of tamely ramified finite places to the right side 

of (11.3) for the cover X ~ p1. If ci is the order of the inertia group generator 

for zi, this adds ci-1 (q _ 1) to (11.3). From Part  1 this right side would exceed C l  x 

its allowance if there were two finite ramified places. Also, since the degree of 

the Galois closure (over /~)  is equal to the order of Goo, Goo = G. | 

We now do a complete version of Theorem 8.1 for the groups of Theorem 11.1. 

Computations analogous to those of §7-§8 work to describe exceptional f s that 

have the solvable affine group above. There is, however, a complication. If Fq 

doesn't contain all kth roots of 1, the arithmetic monodromy group isn't of form 

V x" C with cyclic. Our next result clarifies this. We use the notation prior to 

Theorem 8.1. 

Par t  3 of the proof of Theorem 11.1 shows X --* X ramified over 0 and oo to 

order k. This cover is otherwise without ramification. Conclude: 

(11.4) f ( s w  k) = m(g(w))  k 

for some s, m E K and for some polynomial g. In addition, g is a polynomial 

whose geometric monodromy group is V. Thus, g is an additive polynomial; its 

form is 

(11.5) bow f + blWp ~-1 + . . .  + baw. 

We have assumed w = 0 lies over z = O. Take the normalizations from §8: for f ,  

0 lies over 0, and f is monic. Then: 

(11.6) f ( x )  = x(x  t + ~ at, xt') k = x(h(x))  k. 

t ~ , t ' k = p  a~ - 1 , a ~ < a  
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These polynomials are Cohen's subfinearized exceptional polynomials [C2; p. 56]. 

Cor. 11.2 therefore generalizes the proof of Dickson's Conjecture (Theorem 8.1). 

Take K = Fq in the statement of the next corollary. Also, as in §4, take f i r_ ,  

to be the splitting field of f (x)  - z over K(z), and /<  = f t f_ ,  N/<. Finally, for 

(r,p) = 1, take (r to be a primitive rth root of 1. 

COROLLARY 11.2: Consider an indecomposable exceptional polynomial f over 

Fq given by (11.6). If k [q-1  (Fq contains all kth roots of 1), the arithmetic 

monodromy group G is V x s C with C cyclic acting irreducibly on V. Otherwise, 

the arithmetic monodromy group is of the form V x ~ M with M nonabelian, but 

still solvable. Assume: k [ q - l ;  G = V x" C with 0 cyclic and acting irreducibly; 

and G = V x s D, the geometric monodromy group, with D not acting irreducibly 

on V. Then, f is indecomposable over Fq but not over the algebraic c/osure. This 

occurs, for exarnple, i f  the following hold: 

( l l .7a)  h(z) in (11.6) is irreducible over rq; and 

( l l .7b) kip a' - 1 for some a' < a. 

Proof." Assume f in (11.6) is exceptional. All Puiseux expansions for solutions 

of f ( z )  - z around z = 0 have coefficients in L = K(zeros of h, ~k). Indeed, one 

of these, say zl  is in K((z)); the remainder z2 , . . .  , z  r .  are in E((z~)). Therefore, 

/~ C L. We now show equality of these fields. 

Consider the additive polynomial g(w) in (11.5). Suppose w is any solution 

of m(g(w)) k = z. Check: The zeros of this equation are (~(w + v) for j = 

0 , . . . ,  k - 1 as v runs over the zeros of g(w). The field generated by these at~ine 

transformations of w is the minimal extension of K ( w ) / K  over which we can 

define all conjugates of w. Therefore, this is the Galois closure of K(w) /K.  

Thus, the zeros of g(w) and ¢k generate f f / K .  From (11.4), sv ~ runs over zeros 

of h as v runs over zeros of g: L = L' = / ~ .  Conclude: 

(11.8) f is exceptional if and only if h has no zeros in K: the analog from §7 for 

n = p .  

As in the proof of Theorem 11.1, let G = V ×s D be the geometric monodromy 

group. The action of D = (r) appears in the invariance of f (sw k) under w ~ ~kw 

with Ck any kth root of 1. Denote the qth power map acting on the coefficients 

of z2 , . . .  ,zpo E L((z-})) by a as at the beginning of the proof. We have ( r ,a )  = 

G(1). The condition k]q-1 is exactly that r and a commute. Check if they 
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commute applied to z ~=: 

Thus, G(1) is abelian exactly when k l q - 1 .  

Now assume k I q -1 .  Since ] is indecomposable, G is primitive. This is equiv- 

alent to G(1) acting irreducibly on V. As 7" and a commute, each preserves 

invaxiant subspaces for the other. Thus, one of these must act irreducibly on V. 

Conclude: G(1) = C for some cyclic group C. The remainder of the Corollary 

follows from Galois theory. Condition ( l l .7a)  guarantees C = F ; , .  Condition 

( l l .7b)  assures D does not act irreducibly. | 

So fax, we have no exceptional polynomial with nonsolvable geometric mon- 

odromy group. We haven't,  however, eliminated the following from being such 

an example. 

R e m a r k  11.3: Possibility for an exceptional polynomial  with nonsolvable attlne 

group of degree p2. Consider (~(1) < GL2(p). The only nonsolvable possibility 

for G(1) either contains SL2(p) or it contains SL2(5) with p not 5. In the former 

case, the group is 2-transitive, so G can't be tile geometric monodromy group of 

an exceptional polynomial. In the latter case, G(1) = SL2(5) * Z where Z is a 

subgroup of scalars. We don't  know if we can exclude this. The first step is to 

carry out the calculation with the Polynomial R-H Lemma of §9. | 

Remark 11.4: A counterexample with p = 2 o f  the Indecomposabil i ty  S ta tement .  

Peter Mueller pointed to a simple example of Schinzel with p = 2. Take a a 

solution of yS _ y + 1 = 0 over F2. Then f ( x )  = x 4 + x 2 + x = f l ( f 2 ( x ) )  with 

f l  = x2 + a - I x  and f2 = x 2 + ax  [Sc; p. 15]. The geometric monodromy group 

is V = ~'~ and the arithmetic monodromy group is V ×s C with C cylic of order 

3. Also q = p = 2. In the notation of Cor. 11.2, k = 1. So, the hypothesis k [ q - 1  

holds and this is, indeed, an exanlple of Cor. 11.2. | 

E x a m p l e  11.5, Mueller [M]: A counterexample to the Indecomposabil i ty  State-  

m e n t  with plln. Here is an indecomposable polynomial of degree 21 over F7 

which decomposes over ~'49. The arithmetic monodromy group is PGL2(7), rep- 

resented on the 21 right cosets of a 2-Sylow P. The geometric monodromy group 

is PSL2(7). 

Primitivity follows from maximality of P in PGL2(7) .  Suppose not: Then 

action of PGL2(7) on the cosets of a group properly between them would yield 
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a faithful representation of degree 3 (clearly nonsense) or 7. In the latter case, 

PGL2(7) would contain a 2-Sylow of $7. In particular, it would contain a trans- 

position. This transposition, together with a 7-cycle of PGL2(7), would generate 

$7, a contradiction. 

For imprimitivity of PSL2(7) we show Q = P N PSL2(7) is not maximal in 

PSL2(7). For this, we find directly a subgroup of order 24 (~  $4) as the stabilizer 

of a point via the representation of PSL2(7) on the 3-space over F2. So, by the 

Sylow Theorems, some conjugate of this group properly contains Q. 

The group Goo is a subgroup of order 21. This illustrates the case p = 7 and 

k -- 3 of Prop. 4.3. Its sharp transitivity is a consequence of P N Goo -- 1. That  

is, PGL~(7)  = P .  Go,,. For Go= just take the image in PSL2(7) of the upper 

triangular matrices of SL2(7). 

To represent this with polynomials, let i be in F4g with i 2 + 1 = 0. Set 

a ( X )  = X 7 + 3 X  5 + 3 i X  4 + 4X s + i X  2 + 3 X  and b (X)  = X s .4- i X  2 + 5 X .  Then 

a(b(X) )  = X 21 + 3 X  15 + 3X is + 2X 11 + 4X g + X 7 + 3X s + X 

is indecomposable over FT. 

Mueller adds: The degree 21 polynomial is too big to check its properties by 

hand. I constructed it and verified the properties with the help of M A P L E .  | 

P A R T  I I I .  S E R I O U S  G R O U P  T H E O R Y  

We say a group is e l i m i n a t e d  if it is not a candidate for the arithmetic mon- 

odromy group (§3) of an indecomposable exceptional polynomial. When p is odd, 

we eliminate all but  affine groups (§l.c), except when p -- 3 for certain explicit 

values of n. This is Theorem 14.1. Carlitz's conjecture follows immediately for 

the afflne case because the degrees of these groups are powers of p, and therefore 

odd. The case p = 3 also has odd degree groups (see §l.c)), and the Carlitz 

conjecture holds for p = 3 as well. 

Notation: Below we use an abbreviated notation for some classical groups. For 

example, Ln(q) is the projective linear group PSL,(Fq)  acting on the points of 

projective space of dimension n, over Fq. 

Suppose d is an integer and s is a prime. When it doesn't conflict with other 

notation, da is the s part of d. Now we explain the term subdegree. The subde- 

grees of a group G acting transitively on a finite set X are the sizes of the orbits 



Vol. 82, 1993 SCHUR COVERS AND CARLITZ'S CONJECTURE 195 

of a point stabilizer. If the group is 2-transitive of degree n, the subdegrees are 

1, n - 1. The rank of a permutation group is the number of orbits of a point 

stabilizer. 

We want to avoid confusing the characteristic for a Chevalley group, and the 

prime p of the finite field containing our polynomials. Indeed, they are often the 

same, but we can't assume so in our arguments. Therefore we choose r instead 

of p here; s is a power of r. An r ' subgroup has order relatively prime to r. 

Suppose G is a group, and A is a subset of G. Use CG(A) for the elements of G 

that centralize each element of A. Also, if G is a finite group and x E G, let x G 
be the conjugacy class of x in G. 

Two natural  subgroups F(G) and E(G) of a group G generate the generalized 
Fitting subgroup F*(G). The Fitting subgroup, F(G), is the maximal nilpotent 

normal subgroup. The components of G generate E(G). A component is a 

subnormal subgroup (from it to G there is a composition series) which is perfect 

and simple modulo its center. When G has a faithful primitive permutation 

representation, F*(G) is the direct product of the minimal normal subgroups of 

G. Usually, there is one minimal normal subgroup. In one case of [ASS], there 

are two. 

OUTLINE OF WHAT COMES NEXT. We use two major tools. The Aschbacher- 

O'Nan-Scott Theorem says there are only 5 general structures for a primitive 

group (see §13). In addition, [LPS] enumerates maximal factorizations of almost 

simple groups. Theorem 13.6 eliminates most structures arising from Aschbacher- 

O'Nan-Scott,  reducing us to three case: the affine case; the case where the fitting 

group (§13) F*(G) has two components; and the almost simple case. The Go~- 

Lemma supplies a factorization of G to which we can apply [LPS]. This and the 

elimination of almost simple groups depends on the orbit condition (9.4) that 

epitomizes exceptionality. 

Finally, we discuss use of the Goo-Lemma in our application of [LPS]. Consider 

that Goo transitive implies 0 = 0 ( 1 ) .  Go¢. T h e .  between 0(1)  and Goo means 

this is the set theoretic product of the two groups. This is the meaning of 

a factorization of a group G. Also, 0(1) is maximal; that is the meaning of 

primitivity. Liebeck, Praeger, and Saxl [LPS] have found a list of all maximal 

factorizations of almost simple groups where neither factor contains the normal 

simple subgroup. Since Go~ is not maximal, we can not apply this result directly. 

This, however, produces suitable maximal factorizations which allow us to use 
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[LPS] effectively (§14). We use the exceptionality condition to eliminate many of 

the possibilities (6,  6(1)). For example, it is the exceptionality condition (9.4) 

that eliminates 6(1) being the normalizer of a parabolic subgroup of a Chevalley 

group. In this case we don't use the exact structure of Goo. We eliminate other 

cases ofa  factorization G = G(1).Goo by using the structure of Goo and knowledge 

of its possible overgroups. The distinction between these cases is important for 

further investigation of the Indecomposability Statement of §4. 

12. Properties of simple groups 

In this section, we prove some properties of simple groups. We assume the 

classification of finite simple groups. A standard reference for Chevalley groups 

is [Car]. The Atlas [At] contains all essential statements about sporadic simple 

groups. 

We give a swift reminder of finite Chevalley groups of characteristic r. A 

primer is impossible here, but [Car] does an excellent job. A reader who is new 

to Chevalley groups might use our references as key words to guide his or her 

way to a first reading of [Car]. Let L be a Chevalley group. Then L has a B, N 

pair structure [Car, Chap. 8]. Here B is the normalizer of a Sylow r-subgroup U 

of L. Any conjugate of B is a Bore/subgroup of L. Generally, but not always, 

N is the normalizer of a maximal torus contained in B. Also, W = N/(B n N) 

is the Weyl group of L. 

In addition, B = TU: T is an r'-subgroup of B, a torus of G. Let ~I, be 

the root system corresponding to W and let A be a base for the system [Car, 

Chapter 2]. These roots are all either of the same length or there are exactly two 

root lengths. Roots of maximum length are long roots. For each root oe, there 

is a corresponding root subgroup U,~; U is the product of the root subgroups 

corresponding to positive roots. If w = v(B N N) 6 W with v 6 N, then define 

BwB as BvB. That is, this double coset is independent of the choice of the coset 

representative v. A disjoint union of the BwB gives all of L. If w is the unique 

element of W of maximal length, then the double coset BwB is the unique double 

coset of maximum cardinality [Car, 8.4]. A parabolic subgroup is any subgroup 

of L containing a conjugate of B. We use the notation in [Car] to refer to these 

groups. 

Here is a survey of the structure of the automorphism group Aut(L) of L. 

This has three types of generators: diagonal, fleld and graph automorphisms 
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[Car, Chapter 12]. An abelian subgroup ] '  _ T of Aut(L) induces the diagonal 

automorphisms of L. The group L = L(s) has a finite field of order s associated 

with it. The automorphisms of the field induce automorphisms of the group. 

(View these groups as matrix groups. Field automorphisms act on matrices and 

so on L as well). 

Suppose the corresponding Dynkin diagram has a symmetry (with r = 3 for 

G2 and r = 2 for B2 and F4). Then this symmetry will induce an automorphism 

of L. These are the graph automorphisms. Except for the groups D4(s) = f~+(s), 

there is a unique graph automorphism of order 2. In these exceptions, the group 

of symmetries of the Dynkin diagram is isomorphic to Ss. Moreover, except 

for the groups G2(s) (with r = 3) or F4(s) and B2(s) (for r = 2), the graph 

automorphism preserves root lengths. In particular, a graph automorphism takes 

long root subgroups to long root subgroups [Car, 12.3-12.4]. The notation B2, 

F4, . . . ,  is standard Lie notation. It refers to the Dynkin diagram associated to 

the group: B2 - PSp4; F4 is an exceptional group. 

LEMMA 12.1: Let L be a nonabelian simple group. There exists an involution 
z E L such that X Aut(L)  = X L. 

Proof: Note that z A"t(L) = z L is equivalent to Aut(L) = LCAut(L)(X). If L is 

sporadic or alternating, then IAut(L)  : LI is a power of 2. Take x E L to be an 

involution in the center of a Sylow 2-subgroup of Aut(L). Such an element exists 

from the (conjugacy) class equation. Apply it to conjugation of the big 2-Sylow 

on the normal subgroup. The result follows. In the remainder of the proof, L is 

a Chevalley group of characteristic r. Part  1 of the proof corresponds to r odd; 

Parts  2 and 3 to r even. 

PART 1: r is odd. If L = L2(s), then L contains a unique conjugacy class of 

involutions. (Just conjugate any involution to one switching 0 and 0¢.) Acting on 

projective 1-space, a representative of this class mal)s an inhomogenous parameter 

z to 1/z. The result follows. 

Now assume L # L2(s). Let T be a torus contained in B. We can choose 

T invariant under field and graph automorphisms, and centralized by diagonal 

automorphisms. Suppose a generates the group of field automorphisms of L. 

Since field and graph automorphisms commute, the graph automorphisms act on 

CT(ct). As L # L2(s), it follows that CT(a) has even order. 

For a moment exclude the case L = D4(s). The group of graph automorphisms 
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has order at most 2. The involutions in CT(a) generate a group of even order, 

so there is an odd number of these. A graph automorphism of order 2 therefore 

centralizes some involution z in CT(a). Thus Aut(L) = LCAut(L)(X). 

If L = D4(s), all the graph automorphisms fix a simple root a .  (This is the 

root corresponding to the interior node of the Dynkin diagram.) In this case, 

Ma~--~f(U,~, U-a) is isomorphic to SL2(s). Note that  U~ and V-~ are invariant 

under the graph, field and diagonal automorphisms. Hence, so is M. Since 

NAut(L)(M) contains generators of Aut(L)/L, Aut(L) = LNAut(L)(M). Now 

M contains a unique involution, a n d  NAut(L)(M) centralizes it. Conclude: The 

result holds for the involution x E M. 

PART 2: The case r = 2. Let Z = Z(U) be the center of a long root subgroup. 

There exists g E L such that  Y = (Z, Z g) is a rank one ChevaUey group. Tha t  

is, Y is either SLy(s), a 3-dimensional unitary group or a Suzuki group. Par t  

3 shows there is a single conjugacy class of involutions in Y. In particular,  all 

involutions in Z are conjugate. 

Suppose Aut(L) contains no graph automorphism interchanging root lengths. 

Tha t  is, L # F4(q) or B~(q). Then, Aut(L) = LNAut(L)(Z). By the above, 

Aut(L) = LCAut(L)(Z) for any involution z 6 Z. Thus, z L = z Aut(D as required. 

Now assume L = B2(s) or F4(s). Let a generate the group of field automor-  

phisms and let 7" be the graph automorphism with a r  = r a .  Then r acts on 

C = CL(a) '  = B2 (2)' or F4(2)'. It  centralizes an involution in Z(S)N C, where S 

is a Sylow 2-subgroup of (C, r) .  Thus, it centralizes an involution x in C. Since 

Aut(L) = (L, r ,  a) ,  x has the desired property. 

PART 3: Involutions in rank 1 groups with r = 2. This fills a gap in the ar- 

gument of Par t  2. Suppose r = 2. Let Z = Z(U) be the center of a long root 

subgroup. Then W = (Z, Z~) is a rank one Chevalley group for some g. From 

the Bruhat  decomposition of W, any two distinct Sylow 2-subgroups of W in- 

tersect trivially. We claim any two involutions in W are conjugate. Let z,  y be 

distinct involutions. The 2-Sylows of W aren' t  normal, so there is a conjugate 

of a 2-Sylow T of W that  doesn' t  meet T. This allows us to assume z, y are in 

distinct Sylow 2-subgroups, S and T, respectively. 

As above, S and T are the unique Sylow 2-subgroups containing z and y, 

respectively. Let D be (z, y). We claim D -~ Dr,  with m odd. For m even there 

is a central involution z in D. Therefore z 6 S N T = 1, a contradiction. So m is 
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odd and all involutions in D are conjugate. In particular, x and y are conjugate. 
| 

LEMMA 12.2: Let L be a simple Chevalley group. Let P be a proper parabollc 

subgroup of  L. Denote the normalizer of  P in Aut(L) by N.  There exists 

x E L \ N such that N x N  = P x N .  

Proof." With no loss take B to be the standard Borel subgroup of L. Let P _> B 

be a standard parabolic subgroup of L. Take x, a long element of the Weyl group 

of L. Then, x is in no proper parabolic subgroup of L. 

Let M = NN(B) .  By a Frattini argument, N = M P .  Thus it suffices to prove 

M x M  = B x M .  As above, B x B  is the unique (B, B) double coset of maximal 

order. If y E M, then y B x B y  -1 = B y x y - l B .  Since B z B  is unique, this last 

expression is B x B .  Therefore, y B x M  D_ y B z B y - l  M = B x B M  = B x M .  So 

M x M  = B x M ,  as required. | 

We list some computations on exponents of Sylow subgroups of simple groups. 

If H is a finite group, denote the exponent of a Sylow r-subgroup of H by dr(H). 

If n is a positive integer, let dr(n) denote the smallest power of r that is at least 

n. Similarly, let f , ( n )  denote the largest power of r that is at most n. 

LEMMA 12.3: 

(a) / f s  = r", ~hen e~(GL,(s)) = e~(n). 

(b) ~(S.) =/~(~). 
(c) I f s  = r" and G = Sp.(s), U.(s) ,  or O~(s), ~hen dr(G) _< dr(n). 

(d) ~ ( a 2 ( ~ ' ) )  < ~ for ~ > 7, ~ ( a 2 ( ~ ' ) )  < ~2, ~ = 3 or 5, = d  ~2(G,(2~)) < S. 

(e) er(3D4(r3")) _< dr(8). 

(f) er( f4(ra))  < er(E6(r a) ___ e~(27). 

(g) er(~E6(r2")) < e~(27). 

(h) e~(Ev(r")) <_ dr(56). 

(i) e~(E6(~")) < er(24S). 

(j) e2(2F4(22"+l)) _< 32. 

(k) e3(~C~(3~a+')) <__ 9. 

(1) e~(2B~(22~+l)) <_ 4. 

Proof." (a) follows by considering Jordan canonical forms. (b) is obvious. Since 

all the groups in (c) embed in GL, (K) ,  g a finite field of characteristic r, (c) 
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follows. Similarly for (d)-(1); the groups have representations of the appropriate 

dimension over a field in the natural  characteristic. | 

It is easy to bound er(Aut(L)),  L a Chevalley group in characteristic r. Use 

the previous result and the structure of the outer automorphism group Out(L)  

of L. 

LEMMA 12.4: Let L be a nonabelian simple group. There exist two dist inct  

pr imes  tha~ divide [L[, but no~ ]Out(L)[. 

Proof." If L is alternating or sporadic, Out(L) is a 2-group. At least three primes 

divide [L[. 

So assume L is a Chevalley group over the field of q = r a elements, r prime. 

For the moment  exclude ~B2(22a+1) with a > 1, 2G2(3~+1) with a > 1 and 

2F4(22~+1)~ with a > 0. We know field, graph and diagonal automorphisms 

generate Out(L).  Thus, we know exactly which primes divide ]Out(L)] (cf. [Car]). 

Formulas for the order of L allow us to apply Zsigmondy's theorem [Z]. This 

asser ts - -wi th  small except ion-- that  if d > 1, m > 1, there exists a prime s where 

s[d'* - 1 but  not d ~ - 1 for any 0 < v < m. Tha t  is, d has order m modulo s. 

Here are the exceptions: d = 2, m = 6; or m = 2 and d is a Mersenne prime. 

Zsigmondy's Theorem together with the formulas for ]Out(L)] and [L[ allows us 

to produce the desired primes. 

First consider the case that  L = L2(q). If a < 2, then the argument of the 

first paragraph applies. So assume a > 2. Apply Zsigrnondy to get primes s, t 

with r of order a modulo s and of order 2a modulo t. Conclude that  (st, 2a) = 1. 

(For example, if s[a, then r ~ -- r ~/ '  mod s.) Thus,  st divides the order of [L[ 

as desired. The only possibilities where Zsigrnondy's Theorem doesn' t  apply are 

r = 2 and a = 3, or a = 6. In the first case take st  = 14 and in the second 

case, take st = 65. In all cases but L = L2(8), we can choose (st ,6) = 1. Next 

consider the case that  L = Ln(q ) , n  > 3. Then ]Out(L)] = 2a(n ,q  - 1). 

Zsigmondy's Theorem gives primes s, t such that  r has order na modulo s and 

r has order (n - 1)a modulo t. Then (st, [Out(L)D = 1 and st divides the order 

of ILl. Here Zsigmondy's Theorem doesn't  apply when r = 2 with na = 6 or 

(n - 1)a = 6 or r is a Mersenne prime with n = 3, a = 1. A trivial inspection in 

these cases yields the result. Note that  in all cases (st,  6) = 1. If  L = Un(q) with 

n _> 3, then [Out(L)] = 2a(n,q  + 1). Choose primes s , t  such that  r has order 

2ha modulo s and (n - 1)a modulo t if n is odd. If n is even, choose primes s, t 
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such that r has order na modulo s and order 2(n - 1)a modulo t. (Check directly 

cases where Zsigmondy's Theorem does not apply.) 

Suppose L is any other Chevalley group. Prime divisors of lOut(L)[ are primes 

dividing a and possibly 2 (3 as well in the case L = Dd(q)). From the two 

previous paragraphs, we can find the desired primes. Indeed, exclude the Ree 

groups and Suzuki groups. Then L will be divisible by the order of Lm(q) or 

Urn(q) and the primes produced above will suffice. 

Finally: Consider the small twisted groups. Suppose L = 2B2(22a+l) or 

2Fd(22a+l) with a ~ 1. Choose primes s,t  with 2 of order 2a+1 modulo s 

and of order 8a+4 modulo t. If L = 2G2(32a+l) with a > 1, choose primes s,t  

with 3 of order 2a+1 modulo s and of order 12a+6 modulo t. If L = 2F4(2)1, 

choose st = 5 .13 .  | 

LEMMA 12.5: Assume M is the direct product of t copies of a nonabelian simple 

group L with t >_ 3. Let D be the diagonal subgroup of M. Set A = Aut(M) 

and d = ILl. Suppose s is a prime that divides ILl but not [Out(L)[. Then: 

(i) either co(A) < (d,) t - '  (as before Lemma 12.3); or 

(ii) t = d, = 3, es(A) = 9. 

In case of Oi), if  x is a 3-element of A, then x s is conjugate to an element of  D. 

In either case, i f  H < A with HNA(D) > MNA(D),  then the Sylow s-subgroup 

of H is not cyclic. 

Proof." By assumption s does not divide IOut(L)l. Therefore, the wreath product 

L I St contains a Sylow s-subgroup of A. Conclude: e,(A) < es(L)e,(S,). In 

particular, e,(A) < dA. Since d, > 3, unless t = d, = 3, dA is less than (d,) t-1. 

Thus, (i) holds unless t = ds = 3. In the latter case, a Sylow 3-subgroup T of 

M has order 81 and if x E T has order 9, then Z(T)  = {x a) is conjugate to a 

subgroup of D. So, (i) or (ii) hold. The last statement follows from (i) or (ii). 
| 

The next lemma uses the following groups and notation. The almost simple 

group corresponding to the d-dimensional orthogonal group over the field Fq is 

Off(q). This is the commutator subgroup of the corresponding orthogonal group. 

With small exceptions, this group is simple modulo its center, which has order 

at most 2. The staaldard notation for tile quotient by the center is Pf~d(q)" If 

d is even there are two forms. The + form corresponds to a sum of hyperbolic 

planes-- the one with a totally singular subspace of dimension d/2. The - is for 
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the other nonsingular form. 

For d odd the two classes of forms are scalar multiples of one another; they 

have the same isometry group. (We don't distinguish between them.) In Lie 

notation, ~22m+l(q) = Bin(q), f~+m(q) = Din(q) and ~2"m(q) = 2Din(q)" 

We also refer to a hyperplane of type O~m. The orthogonal group of dimension 

2m + 1 has the natural module of dimension 2m + 1. It acts on hyperplanes-- 

spaces with the form restricted to it. Hyperplanes of type O~',, are the hyper- 

planes that  are nonsingular of type - .  This set is invariant under the orthogonal 

group. The center acts trivially on this set. Thus, f~2m+l(q) acts on this set: 

indeed, transitively. 

LEMMA 12.6: 

(a) ~2m+l(q) acting on hyperplanes of type O~m for m > 1 has a unique 

subdeg e 
(b) a+m(q) acting on an orbit of non-singular vectors in the corresponding 2m- 

dimensional vector space has a unique subdegree q2m-~ _ 1. 

Proof: This is in [LPS2]: Proof of Propositions 1 and 2--Remark 1 on page 245. 
| 

The next result of this section is a version of the BoreI-Tits Lemma [BT]. 

We only need this when L is a classical group: a linear, unitary, orthogonal or 

sympletic group. In that case, there is an easy geometric proof of the result. 

LEMMA 12.7: Let M be a finite group with F*(M) = L a simple Chevalley 

group of characteristic r. Suppose R is a nontrivial r-subgroup of L. Then 

NM(R) <_ NM(S) for some parabolic subgroup S of L with R <_ Op(S). 

LEMMA 12.8: Let M be a finite group with L = F*(M) a simple d-dimensional 

classical Chevalley group of characteristic r. Let X be a proper subgroup of L 

of index n. Then either er(M) < nr or one of the following holds: 

(a) or(x) # 1; 
(b) L ~- L=(ra); 

(c) L ~ Ld(2) or Ua(2) with d < 5, Sp~(2) with d < 8, or f~i(2) with d < 10; 

o r  

(d) L is one of La(4), U3 (4), L,(3), [/4(3), PSp,(3), Sp,(4) or P12+(3). 

Proof." Note: er(M) < er(L)cr(Out(L)). Also, er(L) < rd (see Lemma 12.3). 

Moreover, if L is defined over the field of r a elements, then er(Out(L)) = arbr 
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(2arbr when L is unitary); b is the order of the group of graph automorphisms of 

L. Here, b < 2 except for the case L ~ Pf~+(r a) in which case b = 6. Also, for L 
d(d-1) 

defined over the field of q elements [Car]: JLlr = q 2 for L linear or unitary; 
d 2 . 

ILl,. = q T  for L symplet]c; [Lit = q , for L orthogonal of odd dimension; 
d2--2d 

and JLJr = q 4 for L orthogonal of even dimension. 

Assume (a)-(d) do not hold. We prove e~(M) < hr. Let Y > X be a maximal 

subgroup of L. If Y is a parabolic subgroup of L, then X N Or(Y) <_ Or(X)  = 1. 

Thus nr _> [Or(Y)[. By inspection and the remarks of the previous paragraph, 

the result holds. Thus, assume X is not contained in a parabolic subgroup. By 

the Borel-Tits Lemma, we may replace X by Y and assume X is maximal in L. 

Now use the main result of [As] (see also [EL] and [LPS]). This asserts one 

of two possibilities. Either X is a natural geometric subgroup of L and it falls 

into one of eight families. Or, X is an almost simple group. If X is a geometric 

subgroup, we compute n~ in each case and observe that er(M) < hr. 

Thus, we need only consider the case F*(X)  = S is a simple nonabelian sub- 

group and X acts absolutely irreducibly on the natural module for L. Moreover, 

assume the representation of X is defined over no proper subfield; otherwise, X 

is a geometric subgroup. 

Let the field of definition of L be of order q. Here q will be the field of definition 

for the natural module for L except when L is unitary. In the latter case, the 

natural module is defined over the field of q~ elements. 

By [L] (or [LPS, p. 32]), one of the following holds: 

(i) IXl < q d+4; 
(ii) IX[ < q4d+s and L is unitary; 

(iii) S = A , , , w i t h m = d + l o r m = d + 2 ; o r  

(iv) (L, S) is given explicitly. 

Conclude from a straightforward computation in each case that er (M) < nr 

unless possibly d _< 12 and X is unitary or d _< 8. In the remaining cases, we 

know precisely which almost simple groups have representations of dimensions 

at most 12 [KL, Chapter 5]. It is straightforward to see er(M) < n~ holds in all 

cases, m 

13. R e d u c t i o n  to the  almost  s imple case 

According to the Aschbacher-O'Nan-Scott classification [ASS], there are five types 

of primitive permutation groups. We mention the three prominent in our work. 
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First: There are almost simple groups. Second are the groups M with E = 

F*(M) = L x L with L a nonabelian simple group; the stabilizer in E of a point 

is a diagonal subgroup. Third are groups M acting on afline space. In this case, 

M = V x a H, where H acts irreducibly on the vector space V. Then M acts 

on V via affine transformations: V acts via translations; and H, the stabilizer of 

a point, acts via linear transformations. Note that doubly transitive groups are 

either almost simple, or they are atone groups as above where H is transitive on 

the non-zero vectors of V. This case occurs in Theorem 11.1 (and Theorem 8.1). 

The groups there, however, are sol,cable while most affine groups are not. 

The following conditions restate, with slight notational change, conditions 

(9.1)-(9.4) of §9. For w E ~ = {1, . . .  ,n} denote the stabilizer of w in 0 (resp., 

G) by Gw (resp., Gw). Fix a prime p. 

(1) G is a primitive group on ~. 

(2) There exists G ~ G with G /G  cyclic. 

(3) There's a transitive subgroup Coo _~ G with p-Sylow Hoo~Goo and Goo/Hoo 

cyclic. 

(4) Gw stabilizes no orbit of Gt~ on f~ \{w}.  

Note: We don't assume G is primitive. The next lemma reinterprets conditions 

(2) and (4). 

LEMMA 13.1: Let 0 and G be finite groups acthag transitively on ft. Assume G 

is a normal subgroup of G and that G = (G, g). The following are equivalent. 

(i) Each element in the coset gG fixes some element of ft. 

(ii) Each element in gG fixes at most one element of ft. 

(iii) Each element in gG fixes exactly one element of ft. 

(iv) 0w fixes no orbit of G~, other than {w}. 

Proof: Let V be the permutation module for the group algebra C[G] corre- 

sponding to F~. Denote the character for this by X : X(g) is the number of 

fixed points of g on ~. Consider a = )"~hca h in the group algebra of G. Put  

a = ~,~,~a x(gh) = x(ga) for g E G. Both 0 (and G) are transitive. Thus, the 

fixed set of G (and G) is a one dimensional subspace V1. 

Let V2 be the G invariant complement in V to V1. This exists by Maschke's 

Theorem. Since ha = a for any h E G, we have a ( g )  = V1. Thus a(V2) = 0 

and a acts as the scalar [G[ on V1. As G_~G, each g E G acts on V1. So 

ga(V2) = g(0) = 0. For 0 # v E V1, [G[bv = (ga)(v), where g(v) = bv and 
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IbI = 1. Thus ~'~xega X(x) = a = IGI b is of absolute value IGI. As X(X) is the 

number  of fixed points of x on ~, (i)-(iii) are equivalent. 

Suppose (iv) holds and g E Gw. Then g fixes no orbit F C fl \ { w }  of Gw. 

Since g normalizes G,~, gF n F = 0. In particular, g fixes no other element of ~. 

Thus, (ii) holds. 

Conversely, suppose (iii). Assume g fixes an orbit F of ~ \ { w } .  We may 

assume that  g fixes w. For v E F, g - i v  = hv for some h E G,~. Thus, gh fixes 

both v and w. This contradiction shows (iv). I 

Let n be a positive integer and s a prime. As at the beginning of Par t  III,  

n ,  is the largest power of s dividing n. Put  n,, = n /n , .  Consider a subgroup 

M of a group H that  is a complement of an s-Sylow of H.  We say M is a Hall 

sl-subgroup of H.  The following easy observation is valuable. 

LEMMA 13.2: Let H act transitively on a set of size n. Then the Sylow s- 

subgroup of H has order at least n, .  I f  M is a Hall s'-subgroup of H, then ns, 

divides the order of  M. 

LEMMA 13.3: Let G be a subgroup of G acting transitively on ~ = {1 ,2 . . .  ,n}. 

Assume Gw fixes no orbit orGy, on f~ \ {w} .  / f ( (~ : G) = s" for some prime s, 

then s divides n - 1. 

Proof: Suppose (G : G) = s °, where s is a prime not dividing n - 1. Since G 

is transitive, (G,, : G,o) = s a. So G~, = G~S,  where S is a Sylow s-subgroup of 

G~,. As S is an s-group, the length of each orbit of S on ft \ { w }  is a power of s. 

Therefore, if s doesn' t  divide n - 1, S must fix some point of f / \ { w } .  Conclude: 

(~w fixes some G,~ orbit on l~ \ {w} .  l 

LEMMA 13.4: Let G be a normal subgroup of G acting on ~ of size n. Assume 

G is transitive on ~ and GIG is cyclic. Suppose Gu, fixes no orbit of  Gw on 

12 - {w}. Assume also, t~ = (G, z) with z E ew.  Then: 

(a) CG(x) < and 
(b) i f  y E G and yG = yG, then y fixes some point of ft. 

Proof  of  (a): By Lemma 13.1, z fixes only w. Since CG(x) leaves the fixed 

points of z invariant, (a) follows. 

Proof of (b): Let C = CG(Y). The hypothesis implies G = GC. Thus choose 

x 6 C with G = (G, x). By Lemma 13.2, z fixes some point. The result now 

follows by (a). 1 
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In the next lemma, H plays the role of Goo from §4. Here H acts transitively on 

~2. Also, the p-Sylow P of H is normal in H by hypothesis (3). We assume H / P  
t t imes 

is cyclic. All this is as in the G~-Lemma of §4. Finally, assume f~ = & x . . .  x / ~  

with A of order d and t > 2. We say H preserves a product  structure if H is 

a subgroup of the wreath product of Sd (acting on A) and St (permuting the 

coordinates of f~). 

LEMMA 13.5: A s s u m e  H as above preserves a produc~ structure on fL Then  

one o f  the fo1Iowing holds: 

(i) t = 2 a n d d = 2 p = , o r  

(ii) d = p~. 

Proof." Assume the result is false. Consider a counterexample with n minimal. 

In particular, n is not a power of p. 

We first claim H f3 (Sa) t # 1. If not, let s # p be a prime dividing d. From 

(3), a Sylow s-subgroup S of H is cyclic and embeds in St. Hence S has order at 

most t. On the other hand, H is transitive. Thus, n divides IHI. So, n,  divides 

the order of S. This implies s t < ns < t: a contradiction. 

Let B be a minimal normal subgroup of H contained in H f3 (S~) t. Call a 

permutation representation of a group semiregulax if it is a disjoint union of 

orbits each equivalent to the regular representation. Since H is solvable, we earl 

replace H by a Hall subgroup and assume that IHt and n have the same prime 

divisors. 

Let N be a nontriviai normal subgroup of H contained in S~. Let Ni be the 

ith projection of N. Since N is normal in H and H is transitive, each orbit of 

Ni on A must have the same length. Denote this common length by u i ( N )  = ui. 

If, moreover, ul . . . . .  ut < d, then H naturally preserves a product structure 

on ~2(N) = A / N 1  x . . .  x A / N t .  Consider two cases. 

CASE 1: B has prime order s # p. Let S be a (cyclic) Sylow s-subgroup of H.  

Since H is transitive, all orbits of the normal subgroup B have the same length. 

Tha t  is, B acts semiregularly on 12. The same must be true of the cyclic group 

S: S acts semiregularly on fL In particular, IS N (Sd)tl < ds and so ISl < td,.  

On the other hand, ISI _> ns = d~ t. This is a contradiction unless t = 2 = 

ds = s and ISI = 4. Moreover, B acts semiregularly on each coordinate. Thus, 

H preserves a product structure on f/(B). By minimality of n, d = 2p a. 
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CASE 2: B is a p-group. Let P be a p-Sylow subgroup of H.  If all the ui(B) s 

are equal, then H preserves a product structure on Y/(B). Thus, the result follows 

by induction. So, assume not all the ui s are equal. Suppose P < S~. Then, either 

u i (P)  = dp or the number  of orbits of P on l] is divisible by p. In the latter case, 

the p ' -group H / P  cannot act transitively on the orbits of P.  This contradicts 

transit ivity of H.  

Therefore, as above, H preserves a product structure on f / (P)  and the result 

follows by induction. So the u i (P)  are equal and as above, H preserves a product 

structure on l](P).  By minimality of n, t = 2 and d = 2p a. Thus, we may assume 

S~ does not contain P.  In particular, t > p and at least p of the u i (B)s  must  

be equal: those corresponding to coordinates in a single P-orbit .  Thus, if t = 2, 

u l (B)  = u2(B), a case we have eliminated above. 

So assume t > 2. Then H acts transitively on A(" )  with 3 <_ p < m < t: on 

the m coordinates with ui equal. This contradicts minimality of n and completes 

the proof. | 

Our goal is to classify groups satisfying (1)-(4). We first show G is either 

an affine group or G is almost simple. When pIIn conclude that  Theorem 8.1 

gives the complete list of exceptional polynomials. For odd p, §14 eliminates the 

almost simple case except in one special family when p = 3. 

THEOREM 13.6: Assume (1)-(4) holds. Set E = F*(G). Then E = F*(G) and 

one of the following holds. 

(i) n = pa and G preserves an att]ne structure on fL 

(ii) n = r is an odd prime and G is a proper subgroup of the a/~ne group of 

degree r. 

(iii) E is simple. 

Proof'. First: Consider the case that  G preserves a product structure on f~ and 

n ¢ pa. Apply Lemma 13.5 to H = Goo. In the notation of Lemma 13.5 we 

may assume t = 2 and d = 2p ~. Hence, exactly two primes divide n. Then [ASS] 

shows E = L × L with L a nonabelian simple group and E~ = U × U. Also, 

(L : U) -- 2p ~ with p an odd prime. Since GIG is cyclic, F*(G) > E. Since 

Ca(E)  = 1, conclude r * ( a )  = E. 

Set A = Sd t. Let P b e a S y l o w p - s u b g r o u p o f H .  S incep  > 2, P_<  A. If 

A > H,  then H I P  cannot act transitively on the orbits of P.  Since H is transitive 

and its Sylow 2-subgroup is cyclic, conclude A cannot contain it. 
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Let Xi be the projection of 0 N A acting on the ith copy of A. Similarly, let Xi 

be the projection of GNA acting on the ith copy of A. So F*(Xi) = F*(.,~i) = L. 

Since H _< G is not contained in A, 

O / G  ~ 0 AI(G A) " .X /X  = n n = i i. 

Thus, there exist gi 6 Xi with g = (gl, g2) 6 0 n A such that 0 = (G, g) and 

f[i = (Xi,gi). Since 0 is primitive, A'i is primitive on A (cf. [ASS]). Let ~ be 

the projection of H n A acting on the ith copy of A. We claim ~ is transitive 

o n  A.  

Suppose ~ has vi orbits on A. Since H is not contained in A, we have vl = 

v~ = v. Thus H N A has at least v 2 orbits on ft. This subgroup has index 2 in 

H. Therefore, H has at least v2/2 orbits on ~. Conclude: v 2 _ 2 and v = 1 as 

claimed. 

Thus, Xi = YiNx,(U) with N;t,(U ) a maximal subgroup of ~'i of index 2p a. 

Take ) (~ ,Xi ,~  in place of G, G, Goo in Theorem 14.1 (below). This shows that  

if 6 6 A, the stabilizer of 6 in Xi fixes some nontrivial orbit of the stabilizer of 

6 in Xi. By Lemma 13.1, there exists Zl E X1 with glzl  having no fixed points 

on A. Let y = zlz2 E G N A with z2 E X2. Then gy has no fixed points on ft. 

Lemma 13.1 shows this violates (4). 

Next assume n = pa. Suppose 0 does not preserve an affine structure on ~. 

From [G] or [ASS], 

F*(G) = E = LI x ... × L, 

with Li ~ L a nonabelian simple group. Moreover, E,~ = U1 × . . .  x Ut where 

(Li : [7/) = d is a power of p. Then, one of two possibilities occurs. Either Li 

acts 2-transitively on the cosets of Ui; or L - PSp4(3 ) and Li is rank three with 

suborbitals of size 1, 10, and 16 [G]. In particular, Ew has a unique orbit of size 

( d -  1) t or 16 t. Both G~ and Gu, preserve this orbit. This contradicts (4). Thus, 

(i) holds. 

We claim F*(G) = E. Since E is the unique minimal normal subgroup of 0 

and G is a nontrivial normal subgroup of G, G _> E. As E(G) and F(G) are 

characteristic subgroups of G, they are each normal in G. Thus E(G) <_ E(O) = 1 

and F(G) < F(O) = E. This proves the claim. 

So, we can assume n is not a power of p and 0 does not preserve a product 

structure on ~. If (n,p) = 1, then Goo is a cyclic transitive group (Goo-Lemma) 
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of order n. If these groups came from an exceptional polynomial, the Cocycle 

Lemma of §4 shows G is primitive. Even without this assumption, Lemma 4.11 

implies G is primitive. Now, §5 handles this case--G is doubly transitive unless 

n is a prime and the group is afflne (aa~d so (ii) holds). From the remark at the 

end of §9, the former contradicts (4). 

[ASS] shows the only other possibilities are these. Either F*(G) is simple (and 

(iii) holds); or F*(G) = E is the direct product of t copies of the nonabelian 

simple group L with Ew the diagonal of E.  Lemmas 12.4 and 12.5 show t _< 2. 

Now assume t = 2. 

In this case, (~ _< M, with M the normalizer of Ew in Aut(E).  Also, M acts 

naturally on ft with Mw = NM(Etv) = S(r) .  Here 7" is the involution in M with 

CE(7") = Ew and S is the diagonal subgroup of Aut(L) x Aut(L) < Aut(E) .  Let 

y E L be an involution with yL = yAut(L). Lemnm 12.1 guarantees the existence 

of y. Identify y = (y, 1) as an element of E.  We claim MwyMw = EwyMw. 

First: 7"yT"y = (y, y) E Ew. Therefore, 7"yM~ = yT"Mw = yM~. It suffices to 

prove SyMw = EwyMw. By the choice of y, yS = yew and S = EwCs(y).  Thus, 

SyMw = E~yCs (y )M~  = EwyM~. This proves the claim. From the claim, 

conclude GwyGw = G,,yGw ~ Gw, contrary to (4). This completes the proof. 
| 

1 4 .  A l m o s t  s i m p l e  g r o u p s  

We complete the classification of groups satisfying (1)-(4). Theorem 13.6 shows 

we need to consider only the affine case and the almost simple case; §4 and §8 

have done the prime degree case. In particular, if the degree is even and p is 

odd, we need only consider the almost simple case. In this section we show, with 

two families of exceptions for p = 2 rind p = 3, there are no exanlples with 

almost simple. The degrees of members of the family of exceptions for p = 3 axe 

odd. Thus the conjecture of Carlitz follows-- essentially from Lemma 13.6 and 

Theorem 14.1. 

THEOREM 14.1: Assume (1)-(4) of §13 mad F*(&) = L is simple. One of these 

holds: 

(a) p = 2 with L ~- L2(2"), a ___ 3 odd, and n = 2 " - ' ( 2  a - 1); or 

(b) p = 3 with L ~- L~(3~), a _ 3 odd, and n = 3"(3 ~ - 1)/2 odd. 
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COROLLARY" 14.2 (Carlitz Conjecture): Assume (1)-(4). If p is odd, then n is 

odd. Indeed, the degree of any exceptional cover X ~ Y (§10) with (at least) 

one totally ramified rational point of Y is odd. 

We prove this using the classification of finite simple groups in a series of 

lemmas. Throughout the section we assume 0 satisfies (1)-(4) and F*(G) = L 

is a simple nonabelian group. Clearly, F*(G) = L. Thus L _< G _< G <_ Aut(L). 

We restate the special case of Lemma 13.3 we will need. 

LEMMA 14.3: If G/G is a 2-group, then n is odd. 

We proceed through the possibilities for L. The most involved case is when L 

is a classical group. We first handle the case L = Am, m >_ 5. 

LEMMA 14.4: L is not isomorphic to Am, m >_ 5. 

Proof." Recall: Aut(L) = Sin, except for m = 6 where Out(L) has order 4. 

First assume m ~ 6. Since G/G is nontrivial, G = S m  and G = Am. Let r 

be a transposition. Lemma 13.1 allows us to take r E Gw. By Lemma 13.4, 

CG(r) ~ Sin-2 <_ Gw. Since Sin-2 is maximal in Am, we have equality. Thus, 

the action of G is on subsets of size 2 and r has more than one fixed point. 

Lemma 13.1 shows this contradicts (4). 

Now assume m = 6. By Lemma 14.3~ n is odd. Since L has no subgroups of 

index 3, 5 or 9, conclude n is a multiple of 15. Replace Goo by a Hall subgroup to 

assume Goo has odd order. However, A6 has no subgroups of odd order divisible 

by 15. | 

LEMMA 14.5: L is not a sporadic group. 

Proof: Since Out(L) has order at most 2, Lemma 14.3 shows n is odd and 

Aut(L) = G ¢ L = V. In particular, Out(L) is nontfivial. Therefore L is one of 

M12, M22, J2, J3, HS, McL, Sz, He, ON, Fi22, Fi~4 or HN. 

Also, L = L~, Goo. [LPS, Table 6] gives a list of all maximal factorizations of 

sporadic simple groups. The only factorization there of one of the above twelve 

groups with n odd is for L = Ma2. This case has n divisible by 495. Thus, 495 

divides the order of Goo. Any subgroup, however, of L of odd order divisible 

by 11 is contained in L2(11). Thus the subgroup has order dividing 55. T~ 

contradiction completes the proof. | 
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LEMMA 14.6: L is not an exceptional Chevalley group. 

Proof: [LPS, Theorem B] (also, [HLS]) gives all faetorizations of G. There 

are no faetorizations with a subgroup that is cyclic modulo a p-subgroup. This 

contradicts (3). | 

Thus, the only remaining case is that L is a classical Chevalley group of charac- 

teristic r. We assume this for the remainder of the section. We also assume that 

L is not isomorphic to an alternating group (so we can eliminate L4(2) ~ As, 

etc.). We first recall a consequence of Lemma 12.2 and (4). 

LEMMA 14.7: Or(Lw) = 1. In particular, Lw is not a parabolic subgroup of  L 

and r divides n. 

Proof'. Suppose R -- Or(Lw) ¢ 1. Since G~, normalizes R and is maximal in G, 

the Borel-Tits Lemma implies Gw is the normalizer of a parabolic subgroup of 

L. By Lemma 12.2, this contradicts (4). 

Suppose r doesn't divide n. Then, Lw contains a Sylow r-subgroup of L. This 

implies a parabolic subgroup P contains Lw. So it must contain Or(P)  ~ 1, a 

contradiction to the previous paragraph. | 

The remainder of the proof uses that G = G,~ Goo. The memoir [LPS, Tables 

1-4] lists all factorizations of groups M = A B  with F*( M )  = L and A, B maximal 

in M not containing L. We can't directly apply this result to G. Set M = L Go~ 

and let B be a maximal subgroup of M containing Gc¢. Note: B doesn't contain 

L. A priori, we don't know if M~ is maximal in M. Since, however, G = G~L, 

M = MwL.  Conclude: If Mu, _< A is a maximal subgroup of M, A does not 

contain L. Thus [LPS] applies to the maximal factorization M = AB.  This 

already eliminates many possible groups and gives a long list of possibilities for 

L and the overgroups of Lw. 

We show p must be equal to r and therefore we can take B above to be the 

normalizer of a parabolic subgroup of L. Unfortunately, we must go through this 

(fairly lengthy) list and eliminate the cases using conditions (3) and (4). One 

could prove the result directly by the methods used in [LPS], but this would 

duplicate much of efforts of [LPS]. 

Here is a short description of the Tables in [LPS]. Table 1 lists families of 

factorizations where both subgroups are geometric. Table 2 lists families of fac- 

torizations where one subgroup is not geometric. Table 3 contains a finite list 
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of exceptional factorizations. Table 4 gives all possibilities for the faetorizations 

when L = P~+(r~) .  

Keep notation as above and set q = r ~. 

LEMMA 14.8: Assume L = L2(r~). Then one of the following occurs: 

(a) p = 2 with L -~ L2(2~), a > 3 odd, and n = 2"-1(2 ~ - 1); or 

(b) p - 3 with L -q L2(3a), a >_ 3 o d 4  and n -- 3"(3 a - 1)/2 odd. 

Proof: First consider when r is odd. If r divides a, then er(G) < a,.r < n,., 

whence p = r. Thus Or(Goo NL) # 1. Therefore G,, is transitive on 1-spaces. 

Since r divides n, if r doesn' t  divide a, then r divides ]Goo rILl. In this case, 

we still have that  G~ is transitive on 1-spaces. [LPS, Tables 1 and 3] lists the 

possibilities for (~,~. We briefly go through these. 

First consider the possibilities in [LPS, Table 3]. In all cases, Out(L) is a 

2-group. Thus n is odd. Here are the remaining possibilities: L,, = A5 with 

q = 11, 19, 29, or 59; L,~ = $4 with q = 7 or 23; or L,, = 3.4 with q = 11. Since 

Gw normalizes and properly contains L~, Lw is not isomorphic to A5 or to $4 

w i t h q  = 7. Let g E G - G w i t h g o f o r d e r r - 1 .  By L e m m a 1 3 . 1 a n d  (4), 

9 E G,~ and so (r - 1)/2 divides the order of IL I. This eliminates the remaining 

possibilities. 

The only other possibilities are in [LPS, Table 1]. We may assume q > 5 ( 

L2(5) ~- As). Then n = q(q - 1)/2, and L,v is the normalizer of a nonspllt 

maximal torus of order (q + 1)/2. Now Out(L) = D × F,  where D is the group of 

diagonal automorphisms (of order 2) and F is the group of field automorphisms 

(of order a). Let G = (a, G). Replace a by some element in the coset a L  (if 

necessary) to assume a centralizes an element of order (r - 1)/2 in L. Lemma 

13.4 shows this latter element is conjugate to some element of Lw. Yet, Lw has 

order r + 1. This isn't  a multiple of (r - 1)/2 if r > 5. Thus r = 3 or r = 5. 

Write a = ala2 with tri E D and a2 E F.  Suppose a2 has order less than  

a. Then, a centralizes an element of order (r b - 1)/2 for some b > 1; we obtain 

a contradiction as above. If al  is trivial, then a preserves conjugacy classes of 

elements of order r. Choose some other coset representative in aL to assume a 

centralizes an element of order r. This contradicts Lemma 13.4. 

Similarly, if a is even, then a preserves the conjugacy class of elements of order 

r + 1, a contradiction as above. Thus, a is odd. Since G ~  is the normalizer of 

an r-subgroup, a Borel subgroup of L contains L f3 Goo. If  r = 5, Goo is not 
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transitive unless it contains a diagonal automorphism. This implies all elements 

of order r in G are conjugate. Thus a preserves the conjugacy classes of elements 

of order r in G, a contradiction as above. Thus r = 3 = p, and a > 1 is odd. In 

particular, n is odd as well. 

So assume r = 2. Since L2(4) = As, we may assume a ~ 3. Also, if a is a 

power of 2, then Out(L)  is a 2-group and n is odd, contradicting Lemma 14.7. 

Let a be a field automorphism with G = (L, a). 

First consider the case that  Lw is the normalizer of a nonsplit torus. Then, 

n = q(q - 1)/2. If a normalizes more than one conjugate of the torus, Lemma 

13.1 gives a contraziiction to (4). This will always be the case for a even. If, 

however, a is odd and a generates the full group of field automorphisms, as in 

conclusion of the theorem, a normalizes just one conjugate of the toms.  

If  L = L~(8), then Out(L)  has order 3 and so 3 divides n - 1. Thus Lw 

contains a Sylow 3-subgroup of L. Therefore, Lw is the normalizer of a nonsplit 

torus. So we a s s u m e a  > 5: e~ -- 2a2 < n2; a n d p  = 2 and 02(GcofilL) ~ 1. 

Thus Goo _~ N,  where N is the normalizer in G of a Borel subgroup. Since N 

is maximal  in G, the factorization G = OwN appears in [LPS]. With  a ~ 5 the 

only possiblity is Lw the normalizer of a nonsplit toms.  We've already dealt with 

this case. This completes the proof. | 

For the rest of the proof we assume L is not isomorphic to L2(s) for any s. 

LEMMA 14.9: 

(i) q ~ 2 except possibly i l L  = V,,(2) with m a multiple of 3 or L = ft+(2). 

ii) /£q = 4, then L = Lm(4) with m a multiple 0/'3, Urn(4) wlth m a multiple 

Proof: If q is 2 or 4 and L is not one of the groups excluded, Out(L)  is a 2-group. 

Thus n is odd, contradicting Lemma 14.7. | 

LEMMA 14.10: Lw is not contained in a parabollc subgroup. 

Proof: Assume Lw < P,  a parabolic subgroup of L. Since O~(Lw) = 1, 

n ,  _> IO,(P)l ;  whence n~ > max{cr(G) , lOut(L) l r} .  Conclude: p = r and 

R = O , ( G ~  NL) ¢ 1; Go~ _< N,  the normalizer of a parabolic subgroup Q 

of L. Set X = LN.  Then X = X w g .  From this, IXI = IZw[IYl/IXwfqN[.  Since 

X = XwL,  this implies ILl is a multiple of ILwlINI. Zsigmondy's Theorem shows 

this is impossible. (For the exceptional cases, note that here L is not L2(q), L6(2) 

or Sps(2) and the assertion is also easy to check for n = L3(4) or fl+(2)). | 
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LEMMA 14.11: p = r and Or(L n G~) ~ 1. 

Proof." Set M = L G:¢. Let A and B be maximal subgroups of M containing 

M~ and G~ respectively. Then M = AB = A G~. By the previous result, A is 

not the normalizer of a parabolic subgroup of L. Assume first that L is not one 

of the groups in cases (c) or (d) of Lemma 12.8. Then Lemma 12.8 (or inspection 

of the tables in [LPS]) shows 

IOr(P)l > IOut(L)l,}. 

Thus, p = r (since this and the transitivity of G~  imply the Sylow r-subgroup 

of G~ is not cyclic) and Or(L n G¢¢) # 1. 

Now consider the remaining groups listed in (c) and (d) of Lemma 12.8. By 

Lemma 14.9, we can take L to be one of P~2+(3), ~+(2), PSp4(3), U4(3) and 

L3(4). From [At], if L # L3(4), the subgroups for which the above argument fails 

all have permutation rank at most 3, contrary to (4). Finally let L = L3(4). If 

7 divides I G~ I, then its order divides 21 • 12. This is contrary to Lw not in a 

parabolic. So 7 divides IAI, whence Lt~ _< La(2) and 120 divides I G~  I- Elements 

of order 3 or 5 do not centralize elements of order 8 in Aut(L). Therefore, 

02(L n G¢¢) # 1 also here. | 

Let N be the normalizer (in G) of a parabolic subgroup of L containing Or(Ln 

G~). Take N maximal among such groups. Then N is maximal in M = LN. 

This implies M = AN is a maximal factorization where A is maximal containing 

M~. We now use [LPS] to list the possibilities. 

LEMMA 14.12: L is not isomorphic to L,n(ra), m > 3. 

Proof." By the previous result, the normalizer of a parabolic subgroup of L 

contains G¢¢. Thus, we have a maximal factorization of M = AN, where A 

Mw. [LPS, Tables 1, 3] gives all possibilities for maximal overgroups of M~ in M. 

The only possibility in Table 3 there is L = L5(2), already ruled out in Lemma 

14.9. 

By Lemma 13.4(b), Lw contains transvections. By [LPS, Table 1], the only 

possibility for overgroups of M~ satisfying the above conditions (on primitive 

divisors and transvections) is the normalizer of PSpm(q ) with m > 4 even. The 

intersection of two distinct such subgroups will be contained in other subgroups. 

Therefore, Lw is maximal in L. Zsigmondy's Theorem--Lemma 12.4--implies 
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G ~  f3L contains an element of prime order s that is a prinfitive divisor of qm-1 _ 

1. Therefore, O r ( G ~ )  is the unipotent radical of the stabilizer of a point or 

hyperplane. Then, I G~¢ ]r < nr, unless m = 4. This contradicts transitivity of 

G~ .  If m = 4, then Lm(q) ~ f~+(q) and PSI),,(q ) ~ f~5(q)- Now Lemma 12.6 

implies L has a unique subdegree q4 _ 1. This contradicts (4). II 

LEMMA 14.13: L is not isomorphic to PSp2,,(r~), m > 1. 

Proof: We first exclude the case m = r = 2. By Lemma 14.11, Goo < N, the 

normalizer (in G) of a parabolic subgroup of L. Since Out(L) does not contain 

any graph automorphisms, G = LN. Thus, replace N by a maximal subgroup to 

obtain the maximal factorization G = OwN. We list the possibilities in [LPS]. 

First consider Table 3. If L - PSpa(3 ) ---- U4(2), then Out(L) is a 2-group. As 

usual this forces n odd. If we regard L as being U4(2), then Lw is parabolic. This 

is again a contradiction. If L = PSps(3), then n is even and Out(L) has order 2, 

a contradiction to (4). This completes the treatment of Table 3 in [LPS]. 

Next consider Table 2. Then L is Sps(q ) with q even. The only possibility 

remaining is Lw = G2(q) in L = Sps(q ). Then, however, [LPS2; Prop. 2] gives a 

unique subdegree of L equal to qS _ 1. This contradicts (4). 

Finally, consider Table 1 in [LPS]. Then Lw is PSpc(qb).b with m = bc and b 

prime, or O~,~(q) with q even. From Table 1, in the former case the only possible 

parabolic subgroup P containing Goo NL is the stabilizer of a totally singular 

1-space. This implies Or(Goo NL) < Or(P). Thus, the r-Sylow of Goo NL has 

order at most qZm-1. For m > 2 this implies I Goo Ir < nr: a contradiction to Goo 

being transitive. Thus, 2m = 4 and b = 2. Then PSp4(q ) - f~5(q) and the action 

is on hyperplanes of type O4. By Lemma 12.6, there is a unique subdegree 

( q m + l ) ( q m - l - 1 ) ,  contrary to (4). Similarly, in the latter case PSpzm(2" ) -~ 

I22m+ 1(2 a), and the same contradiction applies. 

Now assume r = m = 2. As above, we obtain a factorization X = X w N  where 

N is the normalizer of a parabolic subgroup of L. There are no examples in Table 

2 or Table 3 of [LPS]. The only examples in Table 1 are with L~o < Y, where 

Y -~ 04(q).  (Note: There are, in fact, two examples listed in the table; a graph 

automorphism interchanges them.) 

If a is a power of 2, then Out(L) is a 2-group. This contradicts n even. In 

particular, q > 8. Now G ~  is contained in the normalizer N of a parabolic 

subgroup. By Table 1, this parabolic must be maximal. Set M = L N  = MwN. 
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Then, by Table 1, the only overgroups of Mw normalize a conjugate of Y. It 

is straightforward to check that any subgroup of the normalizer of Y, which is 

transitive on an orbit of totally singular spaces, is normal. This forces L~, = Y. 

By Lemma 12.6 this contradicts (4) . | 

LEMMA 14.14: L is not isomorphic to Ud(ra). 

Proof." Since Out(L) contains no graph automorphisms, the argument of Lemma 

14.13 shows there is a maxima/factorization 0 = OwN where N is the normalizer 

of some parabolic subgroup of L. We go through [LPS]. 

As usual, eliminate cases where Out(L) is a 2-group and n is even. The only 

cases in Table 3 of [LPS] are U3(5) of degree 50 and U3(8) of degree divisible by 

189. The action is of rank 3. Thus, by Remark 9.1, the former is impossible. 

Since U3(8) contains no elements of order 189, the latter is impossible. 

It remains to consider L = U2m(q) as in Table 1. Since U4(2) ---- PSp4(3)', 

assume (ra, q) ~ (2, 2). The only possibility is w is a nonsingular point, n = 

q2m-l(q2m _ 1)/(q + 1) and Goo stabilizes a totally singular m-space. Then the 

orbit of L~ of all nonsingular points v in the L-orbit with v orthogonal to w is 

0 ~  invariant, contrary to (4). | 

LEMMA 14.18: L is not isomorphic to P~q+(q). 

Proof: [LPS, Table 4] gives all possibilities for maxima/factorizations. As usual, 

we know L,, is not contained in a parabolic subgroup and Goo is contained in 

the normalizer of a parabolic subgroup. 

Suppose Lw stabilizes a 2-dimensional subspace of type O~-. Then n is divisible 

by the p,timitive prime divisors of both q4 _ 1 and q3 _ 1. Consider the action 

on the natural module to see there are no commuting elements of those orders 

contained in the norma/izer of a parabolic subgroup. Therefore, Goo/Op(Goo) 

cannot be cyclic; there is no cyclic group having such orders in L. 

Next consider the possibility Lw is contained in the stabilizer of a nonsingular 

point. From Lemma 12.6 we may assume L~, does not contain F~7(q). By the 

table, we may take Goo to be contained in the stabilizer N of a totally singular 

space of dimension 4. The intersection with N in ~27(q) is parabolic there. This 

leads to a proper factorization of ~7(q) with one factor parabolic. From [LPS], 

the primitive prime divisor of q3 _ 1 divides n (as does the primitive prime divisor 

of q4 _ 1. We get a contradiction as before. 
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In all remaining cases, q _< 3. If q = 2, then Lw _< A9 and 6 divides n. On the 

other hand Out(L) = $3. So GIG is of order 2 or 3, which is impossible. Hence 

q = 3 ,  and Lw _~ f ~ ( 2 )  or Lw (_ 26As. The latter is impossible, since there is no 

element of order 65. Thus Lw ~ f~s+(2) and n is a multiple of 28,431 = 37 • 13. 

If Lw is a proper subgroup of f~s+(2), then it must be in a parabolic of this. 

Therefore, 65 divides n, which is impossible as before. If Lw = f~s+(2), from [At], 

0 = (G, x), where x is a reflection. It follows that CO(x ) < Gw, which is not so. 

This contradiction completes the proof. | 

LEMMA 14.16: L is not isomorphic to P f ~ ( r a ) ,  m >_ 7, where • = +.  

Proo£" As usual, we have Gw = OwN where N is the normalizer of a parabolic 

subgroup. We may assume m # 8 i f ,  = +. If e = - or m is odd, then 

Out(L) contains no graph automorphisms. So, by replacing N by a maximal 

subgroup, we obtain a maximal factorization of G. For this we consult [LPS]. In 

the remaining case, a priori, the table will only give possible overgroups of Lw. 
First consider Table 3 of [LPS]. Here Out(L) is a 2-group, so n is odd. Since 

the action is not parabolic, L = fl7(3). Then Out(L) has order 2. Hence 0 = 

Aut(L) = (L,x), where - x  is a reflection. By Lemma 12.4, f~(3)  < CL(X) 
for e = +1 (by choosing different reflections fixing a given point). These two 

centralizers generate L, a contradiction. 

For L in Table 2, the only possibility is L = f/7(q) with q odd, and Lw = G2(q). 

There is a unique subdegree q3(q4 _ 1)/2 by [LPS2, Prop. 2], contrary to (4). 

Finally, consider the possibilities in Table 1. The only suitable overgroups of 

Lw are unitary groups, the stabilizer of a nonsingular point or the stabilizer of 

a 2-dimensional subspace of type 0 2 .  Consider the case Lw is contained in the 

unitary subgroup. Then m = 2k. By the table, the only parabolic subgroup 

containing Goo NL is the stabilizer of a singular 1-space. Since Goo/Or(Goo) is 

cyclic, I Goo ALIr < q, ,-2,  contradicting the transitivity of Goo. If the stabilizer of 

a 2-dimensional subspace of type 0 2  contains Lw, then n is divisible by primitive 

prime divisors of qk _ 1 and qk-1 _ 1. This leads to a contradiction as in the 

previous proof. (Note: q is not 2 or 4 by Lemma 14.9.) 

The remaining case is when Lw stabilizes a nonsingular point. By Lemma 12.6 

and (4), Lw must be proper, m is even and e = +. The argument here is the 

same as in the proof of Lemma 14.15. This completes the proof. II 

This completes the proof of Theorem 14.1. 
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A D D E N D U M  A. EXCEPTIONAL POLYNOMIALS OF DEGREE 5. We revisit the 

example [Fr2; Ex. 1], writing it out by hand to display the theory of §7 and §8. 

Consider f ( x )  = x 5 + x 3 + bx 2 + cx = z. Choose b a n d c s o t h e  cover o f f  

has two distinct ramified points lying over one finite point of the z-plane. You 

need 3x 2 + 2bx + c to be irreducible. Also, the solutions of this last equation 

should have the same images under f .  With some computation, you find to take 

b = 0 (with no loss) and then c = - 1 .  Denote the solutions + a  of 3x 2 - 1, by 

4-V~. Either solution generates the unique quadratic extension of Fs. Thus f 

determines a cover x H z = . f (x )  that  ramifies over 0 and oo. 

Compute:  ~(x,  y) - fC~)-f(~) - (x - y)4 + z2 + zy + y2 _ 1. This factors as 

( (x  - y)2 + ax  + a'y  + 2)((x - y)2 + ax -I- a 'y  ÷ 2). 

Here a is the conjugate of a (in the degree 2 extension of Fs). For cross terms 

to vanish, ~ = - a  and ~ = - £ .  Thus, - a  2 - 1 = 1, - ( £ ) ~  - 1 = 1. Both a 

and a ~ equal v~ .  This is our nontrivial factorization. The polynomial is clearly 

exceptional. 

Actually, the example of [Fr2] was f ( x )  = x 5 - x s + 2x 2 + x with factorization 

All examples of Theorem 8.1 allow us to illustrate the more intricate situation of 

the Indecomposability Lemma of §4. Tha t  is, l e t / ~  = K ~ be the constants of the 

Galois closure g ( x )  = f~ of the extension g ( x ) / g ( z )  (as in §3). Then f l / g ' ( z )  

is totally ramified over c~. Here Goo is Z /5  x ~ Z/2,  but it appears in its regular 

representation. Of course, as noted in Theorem 8.1, G~o = G ( 1 2 / g ' ( z ) ) .  

A D D E N D U M  B. COHEN, HAYES AND WAN CONTRIBUTIONS. Cohen conjec- 

tures (En), there are no exceptional polynomials of even degree n over Fq for any 

odd q, in [C]. Both he and Wan [W] have shown this for n = 2r with r prime. If 

you also assume p doesn't  divide n, the result isn't  hard. The opening lemmas 

of the Schur conjecture paper  [Fr3] or §3 allows us basic assumptions. We may 

consider when the polynomial is indecomposable (§4) over the algebraic closure, 

and the Galois group contains an n-cycle. As noted in [Fr3], Schur [Sch2] showed 

such a group must  be doubly transitive. Thus, we reduce to the case when n is a 

prime. This is contrary to n being even. The result first appears  in [DaL], then 

in Hayes [H]. 
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Lemma 2.5 of [C] notes that f = g(h) is exceptional if and only if both g and 

h are exceptional. It's hard to say who first noted this, but it was in [Fr4]. 

The following remarks compare the methods of [Fr3] (and this paper) with 

those of the three authors in the title. Cohen assmnes f is exceptional of degree 

n = pSm with m even and (p, m) = 1. Wan and Hayes both use the highest 

l(~)-l(y) They note it is precisely divisible by (y - homogeneous part of e f  = x-~ 

x ) f - 1  and (y + x) f . Consider an irreducible factor of ¢1 of ¢I.  The irreducible 

factors of ¢1 over the algebraic closure all have the same powers of x - y and 

x + y in their highest homogeneous parts. 

For primitive groups Cohen considers the degrees of the stabilizer representa- 

tions. He translates group theoretic results from different sources that predate 

the classification of simple groups. For example, his Lemma 3.2 of [C], takes the 

degrees of the factors ¢i, i = 1 , . . . , k ,  of e f  over Fq to be dl _< d2 ~ . . .  _< dk. 

Then di < dldi- i  and (di, dk) ¢ 1. 

A D D E N D U M  C. AaHYANRAR'S CONJECTURE--HARBATER'S APPROACH. 

Assume K = ~'p. Consider a non-singular algebraic curve C defined over K.  

The next conjecture applies where C is a projective curve with a finite number 

(possibly none) of points removed. We explain with more detail in the case C is 

an open subset of l )1. 

Let x l , . . . , x r  be r distinct points in P1(K). Denote the maximal algebraic 

extension o f / ( ( x )  unramified outside x l , . . . ,  xr by fL The extension ~ / K ( x )  is 

Galois. Its Galois group is the algebraic fimdamental group of •a \ {xa , . . . ,  xr}. 

We denote this profinite group by r *~g. A similar definition applies with C replac- 

ing I )1 \ { X l , . . .  ,xr}.  In the next statement the curve C' is a lift of C to char- 

acteristic 0. Thus, we may speak of the topological fundamental group ~rl (C~). 

(See comments following the statement.) 

ABHYANKAR'S FULL CONJECTURE [A]: A 6nite g'roup G is a quotient of Trl ( C) ~'* 

exactly under the following condition. Each prime-to-p quotient of G is a quotient 

Of "/rl ( C ' )  . 

We explain the case C = p1 " -{x l , . . . ,  x~} further. Denote the p-adic numbers 

by Zp. Consider an algebraic closure M of Qp. Use RM for the elements of M 

integral over Zp. There is a unique maximal ideal 7r of RM; RM/Zr = Fp. Choose 

elements x l , . . . ,  x~ E RM whose reduction modulo rr gives x l , . . .  ,x~, in that 

order. Then, ~v~ "{~1 , . . .  ,~>} is a lift of P~ "-{x~,. . .  ,x~} to characteristic O. 
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To define a lift in general, you need words like scheme, proper  and smooth over 

Spec(RM). 

A prime-to-p quotient of G is a quotient H of G with ([HI,p) = 1. Riemann's 

existence theorem (§2) tells us the quotients of ~rl(P 1 \ {~1 , . . . , £ ' r } ) .  They are 

groups with r - 1 generators. Thus, we have a simple statement when C = 

p1 \ { X l , . . . ,  x~). A finite group is a quotient of ~rx(C) "~g if and only if its prime- 

to-p quotients require at most r - 1 generators. 

Grothendieck showed Abhyankar's conjecture when G is prime to p [Gr]. Serre 

IS1] did this for solvable groups when C is the afflne line. Harbater  [Ha] has 

recent results that show how to. add wild ramification at will. Grothendieck's 

Theorem is a constant tool for us. Finally, Raynaud [R] has recently obtained a 

proof of Abhyankar's conjecture when C is the affine line A 1 (§8). The subject 

has started to have potential for applications. 

Still, these results fall short of giving everything we would need, even for 

our Schur cover problems. There are two reasons. Others assume as does 

Grothendieck--an algebraically closed field. In addition, the results don't  have 

the combinatorial look of Riemann's existence theorem in characteristic 0. See 

§11 for details. Research experience, however, should remedy both defects. 

Raynaud uses ideas from Harbater. Here is a brief look at results of [Ha] to 

which the numbering of theorems corresponds. Following this discussion we point 

out why this improves, in cases, over the statement of Abhyankar's conjecture. 

Harbater  calls a cover Y ---* X an H cover if it is Galois with group H.  

THEOREM C1 ([Ha]): Let G be a finite group with Hi C H~, i = 1 , . . .  ,s,  and 

other groups Hi,  s + 1 ~ j < r, each H~ a p-group and each Hk a subgroup of 

H. Let X be an irreducible nonsingular K curve, Y --~ X a nonsingular H cover 

unramified outside the set B = { x l , . . .  ,Zr}. Suppose Hi is an inertia group for 

7i and the cover Y --* X .  Then there is a nonsingular GaJois G cover Z -* X ,  

unramified outside orB,  such that H~ is an inertia group of a point of Z over zi,  

1 < i < s, and the same/'or Hi t'or i > s. Also, we can take Z to be irreducible 

i f  H and the H~ s generate G. 

THEOREM C2 ([Ha]): Consider an irreducible nonsingular projective curve X 

det~ned over K.  Each finite group G is the Galois group of  an irreducible Galois 

branched cover of  X .  Suppose we have p-subgroups P1, . . .  ,Prn and dements  

h i , . . .  ,hr of  orders prime to p. Assume these groups and elements generate G. 
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We may  choose the cover to have at most 2r + m branch points. With g the 

genus of X ,  suppose h i , . . . ,  hr generate a prime-to-p subgroup H of G. Then, 

we may  choose a cover realizing G to have at most s branch points. Here s = rn 

if  r <_ g; s = m q-1 i f  g < r <_ 2g; a n d s  = r + m + 1 - 2 g  if  r >_ 2g. We may take 

the positions of the branch points to be arbitrary. 

Outline of Proof: Consider the subgroup H generated by h i , . . . ,  hr. Harbater ' s  

mock cover results (see below) give an H-Galois family over a regular variety 

S. The family consists of branched covers. Its generic member  ramifies over 2r 

points. One would think there could be improvements if we add a condition on 

the products of h i , . . . ,  hr. In addition, a base fiber is connected and the family 

is unibranched along the fiber. His earlier Proposition 5 then implies a Zariski 

dense subset of the fibers are irreducible. For such a cover, choose m points 

other than the branch points. Let Hi be the inertia group over xi ~, X ~ , - . - , X  m 

i < m + 2 r  and Hi = Pi, i _< m. Now apply Theorem 2 to get the 2 r + m  

result. Harbater ' s  construction chooses m + r of the points arbi trary and the 

others generically. 

He then gets a result where the number of branch points has a bound dependent 

on g. To do so, he applies Theorem C1 where he has shown that  H is the Galois 

group of a Galois cover of X that  ramifies over s - m arbi trary points. This 

applies Grothendieck's theorem on the fundamental  group using h i , . . . ,  hr for 

elements that  fit in a collection of canonical generators. | 

Harbater  has used two different ideas. His mock cover ideas s tar t  with gen- 

erators h i , . . . ,  hr that  are prime to p. He pairs them with their inverses, as in 

( h l , h ' ~ l , . . . , h r ,  hr l ) .  Note: Condition (11.1) of §11 now appears automatic.  

The product  of the entries is obviously 1. This condition allows him control over 

the deformation. You could say that  the deformation is so easy, he can also do 

other things. Here he can put  in the p-rmnification without concern for it mix/ng 

with tame ramification. In this case, the tame ramification is all from the h's. 

We illustrated points of his proof to show the bound on the number  of ramified 

points comes from classical ideas. His techniques do not yet allow for mixing 

tame and wild ramification over a given branch point. 

Finally, Serre considers 

I ~ N ~ G ~ G ~ I  
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with p(G), the subgroup of G generated by the p-Sylow subgroups, equal to 

and N solvable [S1,2]. His approach to Abhyankar's conjecture shows it is true 

for G if and only if it is true for G. Reduce easily to the case N is elementary 

abelian of exponent £ with G acting irreducibly. This reduction is compatible 

with considering higher ramification groups. It also recommends a natural split 

into two cases. When the extension is split, and when it is not split. 

It is natural to think the nonsplit case will be the harder. Yet, that isn't true 

here. The p-cohomological dimension of 7r1(C) "~s is 1. That  means the p-Sylows 

of this group are projective. From a theorem of 'rate, they are free. We can 

solve the embedding problem here. Still, without a more explicit sense of the free 

generators of the p-Sylows of lrl(C) "~, we don't  have the explicit information 

that §11 seeks. 

Now we follow Serre to consider the case the extension is split. If e ' = p one 

shows directly you can take 7" : IrA1 ---, G and lift to G. If £ ~ p, this isn't 

always possible. Therefore one modifies 7". Choose m prime to p. Map A 1 to A 1 

using the m-th power map (fixing 0). This induces a surjective endomorphism 

frn : 7rA --* lrA. This composed with 7' gives a surjective homomorphism W,n : 

~'A 1 ---* G, but is even more ramified. (Its Swan invariant at infinity is multiplied 

by m.) With a suitable choice of m, Serre shows it is possible to lift 7",, to G. His 

argument comes the closest to putting in information about higher ramification 

groups. 

LATE NEWS. Harbater's proof of Abhyankar's Full Conjecture. Harbater, build- 

ing on Raynaud has announced a proof of Abhyankar's conjecture for any affine 

curve. Further, if G is a group realized as monodromy group of an unramified 

cover of an affine X,  then you can create such a cover so that only one point 

of X is wildly ramified in the cover. Note: All covers from known exceptional 

polynomials--as in § l l - -have  this property. Intuitively, this gives a lower genus 

for the cover than allowing wild ramification at several points. 
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